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1 Introduction

In these notes, we study a mathematical structure called neural networks. These objects have recently received
much attention and have become a central concept in modern machine learning. Historically, however, they
were motivated by the functionality of the human brain. Indeed, the first neural network was devised by
McCulloch and Pitts [17] in an attempt to model a biological neuron.

A McCulloch and Pitts neuron is a function of the form

RI3xA 1+ WiXi :

whered 2 N, 1g+ : R ¥ R, with 1z+(X) =0for X <0and 1g+(X) = lelse,and w;; 2 Rfori=1;:::d. The
function 1g~+ is a so-called activation function, is called a threshold, and w; are weights. The McCulloch and
Pitts neuron, receives d input signals. If their combined weighted strength exceeds , then the neuron fires,
i.e., returns 1. Otherwise the neuron remains inactive.

A network of neurons can be constructed by linking multiple neurons together in the sense that the output
of one neuron forms an input to another. A simple model for such a network is the multilayer perceptrorﬂ as
introduced by Rosenblatt [26].

Definition 1.1. Letd;L2N,L 2and%:R ¥ R. Then a multilayer perceptron (MLP) with d-dimensional
input, L layers, and activation function % is a function F that can be written as

XAFX) =TT 2C:%(T (X)) (1.1)

where T<(x) = A-x + b, and (A-)}; 2 RN® N1/ b 2 RN for Ne 2 N, Np = d, and © = 1;:::;L. Here
%:R ¥ Risapplied coordinate-wise.

The neurons in the MLP correspond again, to the applications of % : R ¥ R even though, in contrast to
the McCulloch and Pitts neuron, we now allow arbitrary %. In Figure[I.T we visualise a MLP. We should
notice that the MLP does not allow arbitrary connections between neurons, but only between those, that are
in adjacent layers, and only from lower layers to higher layers.

No =38 N; =12 N, =12 N3 =12 Ns=8 Ns=1

Figure 1.1: Illustration of a multi-layer perceptron with 5 layers. The red dots correspond to the neurons.

While the MLP or variations thereof, are probably the most widely used type of neural network in practice,
they are very different from their biological motivation. Connections only between layers and arbitrary

We will later introduce a notion of neural networks, that differs slightly from that of a multilayer perceptron.



activation functions make for an e cient numerical scheme but are not a good representation of the biological
reality.

Nowadays, the eld of neural network theory draws most of its motivation from the fact that deep neural
networks are applied in a technique called deep learning11]. In deep learning, one is concerned with the
algorithmic identi cation of the most suitable deep neural network for a speci ¢ application. It is, therefore,
reasonable to search for purely mathematical arguments why and under which conditions a MLP is an
adequate architecture in practice instead of taking the motivation from the fact that biological neural networks
perform well.

In this note, will study deep neural networks with a very narrow focus. We will exclude all algorithmic
aspects of deep learning and concentrate fully on a functional analytical and well-founded framework.
One the one hand, following this focussed approach, it must be clear that we will not be able to provide a
comprehensive answer to why deep learning methods perform particularly. On the other hand, we will see
that this focus allows us to make rigorous statements which do provide explanations and intuition as to why
certain neural network architectures are preferable over others.

Concretely, we will identify many mathematical properties of sets of MLPs which explain, to some
extent, practically observed phenomena in machine learning. For example, we will see explanations of why
deep neural networks are, in some sense, superior to shallow neural networks or why the neural network
architecture can e ciently reproduce high dimensional functions when most classical approximation schemes
cannot.

2 Classical approximation results by neural networks

The very rst question that we would naturally ask ourselves is which functions we can express as a MLP.
Given that the activation function is xed, it is conceivable that the set of functions that can be represented or
approximated could be quite small.

Example 2.1. For linear activation function84x) = ax, a 2 R itis clear that every MLP with this activation
function is an a ne linear map.

More generally, iP4ds a polynomial of degrde2 N, then every MLP withL layers is a polynomial of degree at
mostk- 1Y

Example 2.1 demonstrates that under some assumptions on the activation function not every function
can be represented and not even approximated by MLPs with xed depth.

2.1 Universality

One of the most famous results in neural network theory is that, under minor conditions on the activation
function, the set of networks is very expressive, meaning that every continuous function on a compact set can
be arbitrarily well approximated by a MLP. This theorem was rst shown by Hornik [13] and Cybenko [7].
To talk about approximation, we rst need to de ne a topology on a space of functions of interest. We
dene,for K RA
C(K) = ff : K ! R:f continuousg

and we equip C(K) with the uniform norm
kf ky = sup jf (x)j:
x2K
If K is a compact space, then the representation theorem of Riesz £8, Theorem 6.19] tells us that the
topological dual space of C(K) is the space

M = f : isasigned Borel measure onK g:

YA diligent student would probably want to verify this.



Having xed the topology on C(K), we can de ne the concept of universality next.

De nition 2.2. Let%: R! R be continuousg;L 2 NandK  RY be compact. Denote ByLP( %; d; ) the set of
all MLPs with d-dimensional inputL layers,N,. =1, and activation functior?s
We say thaMLP( %; d; ) is universal, ifMLP( %; d; 1) is dense irC(K).

Example 2.1 demonstrates thatMLP( %; d; L) is not universal for every activation function.
Denition 2.3. Letd2 N,K  RY, compact. A continuous functioh : R! R is calleddiscriminatory if the only
measure 2 M such that Z
f(ax bd (x)=0; foralla2 R%;b2 R
K

is =0.

Theorem 2.4 (Universal approximation theorem [ 7]). Letd 2 N, K RY compact, and: R ! R be
discriminatory. TherMLP( %; d2) is universal.

Proof. We start by observing that MLP( %; d2) is a linear subspace of C(K ). Assume towards a contradiction,
that MLP( %; d2) is not dense in C(K ). Then there existsh 2 C(K) n MLP( %; d2).
By the theorem of Hahn-Banach [28, Theorem 5.19] there exists a functional

06 H2C(K)
sothatH =0 on MLP(%; d?). Since, fora2 R%;b2 R,
X 7! %ax b)=:%p 2 MLP(%;d2);

we have that H (%) = 0 for all a 2 R% b 2 R. Finally, by the identi cation C(K)®= M there exists a
non-zero measure so that z
%pd =0; foralla2 R%b2R:
K
This is a contradiction to the assumption that %is discriminatory. O

At this point, we know that all discriminatory activation functions lead to universal spaces of MLPs. Since
the property of being discriminatory seems hard to verify directly, we are now interested in identifying more
accessible su cient conditions guaranteeing this property.

De nition 2.5. A continuous functionf : R! Rsuchthatf (x)! 1forx!1 andf(x)! Oforx! 1 is
calledsigmoidal .

Proposition 2.6. Letd2 N, K RY be compact. Then every sigmoidal functionR ! R is discriminatory.

Proof. Let f be sigmoidal. Then itis clear from De nition 2.5 that, for T,

8

< 1 ifax b>0
f((ax b+ )t f() ifax b=0

) 0 ifax b<O:

As f is bounded and K compact, we conclude by the dominated convergence theorem that, for every
2M, z z z
f((a b+ )d ! d + f()d;
K

H ap;> Hap; =

where
Haps> =fx2K:ax b>0gandHap=- =fx2K:ax b=0g:



Figure 2.1: A sigmoidal function according to De nition 2.5.

Now assume that 7z
f((a b+ )d =0
K

forall a2 RY;b2 R. Then 7 7
1d + f()d =0

H ab;> H ab; =

andletting !1 ,weconcludethat , =~ 1d =0 forall a2 RY: b2 R.

For xed a2 RY and b, < b,, we have that
Z Z Z
0= 1d 1d = 1[b1;b2](aX)d (X):
Hab 4+ Hab ,;+ K
By linearity, we conclude that
Z
0= g(ax)d (x) (2.1)
K

for every step function g. By a density argument and the dominated convergence theorem, we have that (2.1)
holds for every bounded continuous function g. Thus (2.1) holds, in particular, for g = sin and g = cos. We
conclude that

Z Z

0 cosf@x) + isin@x)d (x)=  €>d (x):
K

K

This implies that the Fourier transform of the measure  vanishes. This can only happenif =0, [27, p.
176]. O

Remark 2.7. Universality results can be achieved under signi cantly weaker assumptions than sigmoidality. For
example, in15] it is shown that Example 2.1 already contains all continuous activation functions that do not generate
universal sets of MLPs.

2.2 Approximation rates

We saw in Theorem 2.4 that MLPs form universal approximators. However, neither the result nor the proof
of it give any indication of how "large" MLPs need to be to achieve a certain approximation accuracy.



Before we can even begin to analyse this question, we need to mtroduch a precise notion of the size of a

MLP. One option could certainly be to count the number of neurons, i.e., 1 N~ in (1.1) of De nition 1.1.
However, since a MLP was de ned as a function, it is by no means clear if there is a unigue representation
with a unique number of neurons. Hence, the notion of "number of neurons” of a MLP requires some

clari cation.

De nition 2.8. Letd;L 2 N. A neural network (NN) with input dimension dand L layers is a sequence of
matrix-vector tuples
= (Anb);(Azibp); i (Ash)

whereNg := dandNy::::;N_ 2 N, and wheréA- 2 RN N 1 gndb 2 RN for> =1;:::L.
Fora NN and an activation functio®: R! R, we de ne the associatedalisation of the NN as

R(): RYI RNt :x 71 x. :=R()( x);
where the outpuk, 2 RNt results from

X0 = X;
X = %A-x 1+b) for =1;:::;L 1L (2.2)
XL = AL X, 1+ Db

Here%s understood to ag component-wise.
We callN() = d+ J -1 Nj thenumber of neurons of the NN, L() = L thenumber of layers or

depth, andM () = '—1 M;() = ,:1 kA ko + Kby ko the number of weights of . Herek:ko denotes the
number of non-zero entnes of a matrix or vector.

According to the notion of De nition 2.8, a MLP is the realisation of a NN.

2.3 Basic operations of networks

Before we analyse how many weights and neurons NNs need to possess so that their realisations approximate
certain functions well, we rst establish a couple of elementary operations that one can perform with NNs.
This formalism was developed rst in [23].

To understand the purpose of the following formalism, we start with the following question: Given two
realisations of NNs f,;: R4! Rdandf,: RY! RY, isitthe case that the function

x 7' f2(f1(x))

is the realisation of a NN and how many weights, neurons, and layers does this new function need to have?

Given two functions f; : RY! R% andf, : R” | R where d;d®d®2 N, we denote by f; f, the
composition of these functions, i.e., f1 f2(x) = f1(f2(x)) for x 2 RY. Indeed, a similar concept is possible
for NNs.

De nition 2.9. LetLi;L, 2 Nandlet = ((AL;bl);::i; (AL B ) 2 = (AL B9); 015 (A2 ;b)) be two
NNs such that the input layer of * has the same dlmension as the output layer of Then 1 2 denotes the
followingL; + L, 1 layer network:

Pt AR i AR o, 0 ATARATE, + b5 AZ s ALGH
Wecall * ?theconcatenationof 'and 2.
Itis left as an exercise to show that
R ' ?2=R ' R ?:

A second important operation is that of parallelisation.



Figure 2.2: Top: Two networks. Bottom: Concatenation of both networks according to De nition 2.9.

LP % 2= ARB Al o A ifd = da,
2.FP L 2 = AKyby ;i ALibl | forarbitraryds;dy 2 N,
where
- Al g .. B . A0 B -
hl . A% ) Bl - tﬁ 3 and R . 0 A2 5 b — lf fOfl I_

P( %; 2?)is a NN with d-dimensional input and. layers, called thparallelisation with shared inputs of 1 and
2. FP( *; ?)isaNN with d; + dy-dimensional input and. layers, called thparallelisation without shared
inputsof Yand 2.

Figure 2.3: Top: Two networks. Bottom: Parallelisation with shared inputs of both networks according to
De nition 2.10.

One readily veriesthat M(P( %; 2)= M(FP( % 2)= M( H+ M( ?),and

RP( 5 2N(X)=(Rof DN(X);Re( 3)(x));  forall x 2 R%: (2.3)



We depict the parallelisation of two networks in Figure 2.3. Using the concatenation, we can, for example,
increase the depth of networks without signi cantly changing their output if we can build a network that
realises the identity function. We demonstrate how to approximate the identity function below. This is our
rst quantitative approximation result.

Proposition 2.11. Letd2 N,K  RY compact, an@o: R ! R be di erentiable and not constant on an open set.
Then, for every > 0, there exists a NN = (( A1;b); (A2 1p)) suchthatA1; A, 2 RY 9 by 2 RS, M ()  4d,
and

JRO( X)) xj<;
forallx 2 K.

Proof. Assume d = 1, the general case ofd 2 N then follows immediately by parallelisation without shared
inputs.
Letx 2 R be such that %is di erentiable on a neighbourhood of x and%(x )= 60.Dene,for > 0

bh=x; Ai1=1=; b= %(x)=; Ay= =:
Then we have, forall x 2 K,

RO(x) xj= 2E*x) %) . (2.4)

If x =0, then (2.4) shows thatjR()( x) xj=0. Otherwise

Xj %x= +x) %x)
j X=

JRO( X)) xj=

By the de nition of the derivative, we have that jR()( x) xj! Ofor !1 andallx2K. O

Remark 2.12. It follows from Proposition 2.11 that under the assumptions of Theorem 2.4 and Proposition 2.11 we
have thatMLP( %; d; D) is universal forevery. 2 N,L 2.

The operations above can be performed for quite general activation functions. If a special activation is
chosen, then di erent operations are possible. In Section 3, we will, for example, introduce an exact emulation
of the identity function by realisations of networks with the so-called ReLU activation function.

2.4 Reapproximation of dictionaries

Approximation theory is a well-established eld in applied mathematics. This eld is concerned with
establishing the trade-o between the size of certain sets and their capability of approximately representing a
function. Concretely, let H be a normed space and(Ay )n 2n be a nested sequence (i.eAy A+ for every
N 2 N) of subsets ofH andletC H .

For N 2 N, we are interested in the following number

(AN; O =sup inf kf gky: (2.5)
f2C 92AN

Here, (An;C) denotes the worst-case error when approximating every element of Chy the closest element
in Ay . Quite often, it is not so simple to precisely compute (Ay ; ©) but instead we can only establish an
asymptotic approximation ratéf h: N! R™* is such that

(An;O = O(h(N)); forN!1 ; (2.6)

then we say that (Ay )n 2n achieves an approximation ratetofor C.



De nition 2.13. A typical example of nested spaces of which we want to understand the approximation capabilities are
spaces of sparse representations in a basis or more generally in a diction@y=Lt;), H be adictionary Z.
We de ne the spaces

(4 )
AN = cfi:kckg N (2.7)
i=1
Herekckg =# fi 2 N: ¢ 6 0g.
With this notion of Ay , we call (Ay ; C) the besN -term approximation error of with respect td . Moreover, if
h satis es(2.6)then we say thaD achieves a rate of bestN -term approximation error of h for C.

We can introduce a simple procedure to lift approximation theoretical results for N -term approximation
to approximation theoretical results of NNs.

Theorem 2.14. Letd2 N,H f f :RY! Rgbeanormedspad®; R! R,andD = (fi)L; H beadictionary.
Assume that there exist, C 2 N, such that, for every2 N, and for every > 0 there exists a NN ; such that

L(Ci)=L M) C kR( ;) fiky : (2.8)
ForeveryC H ,deneAy asin(2.7)and
By = fR(): is a NN with d-dim input, L()= L;M () Ng:

Then, foreveryC H ,
(Ben ;O (AN O

Proof. We aim to show that there exists C > 0 such that every element in Ay can be approximated by a NN
with CN weights to arbitrBry precision.

Leta2 Ay, thena= jN:1 Ci)figy.- Let > Othen, by (2.8), we have that there exist NNs ( j)jN:]_ such
that

L(Cp)=L M(j5) C R(j) figy, =(Nkcky): (2.9)
We dene, °© = (([Gw;Ce:::n:Gnyli0)and & = © P( 1; 27 ; n). Nowitis clear, by the
triangle inequality, that
. w )QI . .
kR( ) ak= Gy figy RC ) jGpi fig RO )
j=1 j=1
PerDenition2.9, L( ¢ P( 1; 2; ; ~n)=L(P( 1; 25 ; wn))= Landitisnothard to see that
MC® PO 2 o n) MEPCL 20 5 w) N max M(;) NC

15N
O

Remark 2.15. In words, Theorem 2.14 states that we can transfer a clagsigalm approximation result to approxi-
mation by realisations of NNs if we can approximate every element from the underlying dictionary arbitrarily well by
NNSs. It turns out that, under the right assumptions on the activation function, Condit{@8)is quite often satis ed.

We will see one instance of such a result in the following subsection and another one in Proposition 3.3 below.

ZWe assume here and in the sequel that a dictionary contains only countably many elements. This assumption is not necessary, but
simpli es the notation a bit.



2.5 Approximation of smooth functions

We shall proceed by demonstrating that (2.9)holds for the dictionary of multivariate B-splines. This idea,
was probably rst applied by Mhaskar in [18].

Towards our rst concrete approximation result, we therefore start by reviewing some approximation
properties of B-splines: The univariate cardinal B-spline on [0; k] of order k 2 N is given by

1 Xk

Ny (X) = m‘:0( 1) T (x L forx2R; (2.10)

where we adopt the convention that 0° = 0. ‘
Fort2 Rand 2 N,wedene N.wk = Ng(2 (t)). Additionally, we denote for d2 N, 2 N,t 2 R the
multivariate B-splinesy

\
NS (X) = Nuga(xi);  for x = (X1;:::%q) 2 RY:
i=1

Finally, for d 2 N, we de ne the dictionary of dyadic B-splines of ordérby
BX= N ,: 2Nt 22 z%: (2.11)

BestN -term approximation by multivariate B-splines is a well studied eld. For example, we have the
following result by Oswald.

Theorem 2.16 ([21, Theorem 7]). Letd;k2 N,p2 (0;1 ],0<s k. Then there exist€ > 0 such that, for every
f 2 C3([0; 1]9), we have that, for every> 0, and everyN 2 N there exists; 2 R with joj Ckfk; andB; 2 BX

f cBi . N T kfkes:
i=1 LP
In particular, forC:= ff 2 C3([0; 1]%) : kf kes  1g, we have thaB¥ achieves a rate of béétterm approximation
error of ordeN ° for every > 0.2

an [21, Theorem 7] this statement is formulated in much more generality. We cite here a simpli ed version so that we do not have
to introduce Besov spaces.

To obtain an approximation result by NN via Theorem 2.14, we now only need to check under which
conditions every element of the B-spline dictionary can be represented arbitrarily well by a NN. In this regard,
we rst x a class of activation functions.

De nition 2.17. Afunction%: R! R is called sigmoidal of order2 N, if %2 C9 1(R) and

%X %X
1O | -
el 0; forx! 1 ; <

j%x)j . (L+ jxj)9; forallx 2 R:

I 1;forx!1 ; and

Standard examples of sigmoidal functions of order k 2 N are the functions x 7! maxf 0; xg?. We have the
following proposition.

Proposition 2.18. Letk;d2 N,K > 0,and%: R! R be sigmoidal of ordey 2. There exists a constaft > 0
such that for every 2 BX and every > Othereisa NN  with dog,(d)e+ dmaxf logq(k  1);0ge+1 layers and
C weights, such that

K Roe ki g w0

10



Proof. We demonstrate how to approximate a cardinal B-spline of order Kk, i.e., Ngo;k, by a NN  with
activation function % The general case, i.e.N\‘;‘t;k , follows by observing that shifting and rescaling of the
realisation of can be done by manipulating the entries of A; and b; associated to the rstlayer of . Towards
this goal, we rst approximate a univariate B-spline. We observe with (2.10)that we rst need to build
a network that approximates the function x 7! (x)X 1. The rest follows by taking sums and shifting the
function.

It is not hard to see (but probably a good exercise to formally show) that, for every K°> 0,

ad i%) % %ax; x 1 Ofora!l uniformlyforall x2 [ K%K9:

T times

Choosing T = dmaxflog,(k 1);0gewe have that g" k 1. We conclude that, for every K°> 0and > 0
there existsaNN  with dmaxflog,(k 1);0ge+ 1 layers such that

R(C ) xb (2.12)
forevery x 2 [ K%K, wherep k 1. Weobservethat,forallx 2 [ K%KJY,

R . (x+ ) R . (X

opx? Yfor 1 O (2.13)

Repeating the 'derivative-trick' of (2.13) we can nd, forevery K°> 0and > 0aNN Y such that, for all
x2[ K%KY,
R( )(x) x§*

By (2.10) it is now clear that there exists a NN - the size of which is independent of  which approximates
a univariate cardinal B-spline up to an error of

As a second step, we would like to construct a network which multiplies all entries of the  d-dimensional
output of the realisation of the NN FP( -;:::; -). Since%is a sigmoidal function of order larger than 2,
we observe by the 'derivative trick' that led to (2.12)that we can also build a xed size NN with two layers
which, for every K°> 0and > 0, approximates the map x 7! x2 arbitrarily wellfor x2 [ K%K?Y.

We have that for every x = (X1;X»2) 2 R?

21X = (X1 + x2)% x§ x5=(xa+x2)i +( xa x2)i  (x)f ( x)f (x2i ( x2i: (214)
Hence, we can conclude that, for every K °> 0, we can nd a xed size NN ™t with input dimension 2
which, for every > 0, approximates the map (x1;X,) 7! x1X, arbitrarily well for (x1;x2) 2 [ K%K 2.

We assume for simplicity, that log,(d) 2 N. Then we de ne

mult ;d;d=2 ._— mult ..... mult y.
o =FP Tl :
( I—{Z—})
d=2 times
Itis clear that, forall x 2 [ K%K?99,
R MILAGS2Z (0500 X)) (XaX2; XaXa; 10 Xd 1Xd)
Now, we set
mult ;d;1 = mult mult ;4;2 S mult ;d;d:2: (2_15)

We depict the hierarchical construction of (2.15)in Figure 2.4. Per construction, we have that ™t 41 has
log,(d) + 1 layers and, for every °> 0and K °> 0, there exists > 0such that

mUtidilix,iiiixg)  XiXe  Xg 0.

11



X1X2X3X4X5XeX7X8

X1X2X3X4 X5XeX7X8g

X1X2 X3X4 X5Xg X7Xg

X1 X2 X3 X4 Xs X6 X5 X6

Figure 2.4: Setup of the multiplication network (2.15) Every red dot symbolises a multiplication network
mult and not a regular neuron.

Finally, we set

— multidl Epf e .

— o FP( T _)'

| —{z—}
d times

Per de nition of , we have that hasdmaxflog,(k 1);0ge+log,(d)+1 many layers. Moreover, the size of
all components of was independent of . By choosing su ciently small itis clear by construction that
approximates Ng;O;k arbitrarily wellon [ K;K ]9 for su ciently small . O

As a simple consequence of Theorem 2.14 and Proposition 2.18 we obtain the following corollary.

Corollary 2.19. Letd2 N,s> > 0Oandp2 (0;1 ]. Moreover le®: R! R be sigmoidal of order 2. Then
there exists a consta@ > 0 such that, for ever§ 2 CS([0; 1]%) with kf kes 1 and everyl=2> > 0, there exists
aNN such that

K RO ko

andM () C sd*andL()z dog,(d)e+ dmaxflog,(dse 1);0ge+1.

Remark 2.20. Corollary 2.19 constitutes the rst quantitative approximation result of these notes for a large class
of functions. There are a couple of particularly interesting features of this result. First of all, we observe that with
increasing smoothness of the functions, we need smaller networks to achieve a certain accuracy. On the other hand,
at least in the framework of this theorem, we require more layers if the smoaths@ssch higher than the order of
sigmoidality 0%

Finally, the order of approximation deteriorates very quickly with increasing dimemsi@uch a behaviour is often
calledcurse of dimension. We will later analyse to what extent NN approximation can overcome this curse.

2.6 Fast approximations with Kolmogorov

One observation that we made in the previous subsection is that some activation functions yield better
approximation rates than others. In particular, in Theorem 2.19, we see that if the activation function %has a
low order of sigmoidality, then we need to use much deeper networks to obtain the same approximation
rates than with a sigmoidal function of high order.

Naturally, we can ask ourselves if, by a smart choice of activation function, we could even improve
Corollary 2.19 further. The following proposition shows how to achieve an incredible improvement if d=1.
The idea for the following proposition and Theorem 2.24 below appeared in[ 16] rst, but is presented in a
slightly simpli ed version here.

12



Proposition 2.21. There exists a continuous, piecewise polynomial activation funétioR ! R such that for every
functionf 2 C([0;1]) and every > Othereisa NN © with M () 3,andL() =2 suchthat

f; .
f R . (2.16)

Proof. We denote by @, the set of univariate polynomials with rational coe cients. It is well-known that
this set is countable and dense in C(K ) for every compact set K . Hence, we have thatf jo.;: 2 Cgisa
countable set and dense inC([0; 1]). We set( i)i2z = f jpo;13: 2 Qg and de ne

0 = i(x 2); if x 2 [2i; 2 +1];
V)= D@2 0+ O 2 1) ifx2(2i+1:2i+2):

It is clear that %is continuous and piecewise polynomial.
Finally, let us construct the network such that (2.19)holds. For f 2 C([0;1]) and > 0we have by density

of ( i)izz that there existsi 2 Z such that kf iki . Hence,
fx) x+2D)j=jf(x) i(x)j (2.17)
The claim follows by de ning % = ((1:2i);(1;0)). O

Remark 2.22. It is clear that the restriction to functions de ned df; 1] is arbitrary. For every functiorf 2
C( K;K]) foraconstanK > 0, we have that (2K (  1=2)) 2 C([0; 1]). Therefore, the result of Proposition 2.21
holds by replacin@€ ([0; 1]) by C([ K;K ]).

We will discuss to what extent the activation function %of Proposition 2.21 is sensible a bit further
below. Before that, we would like to generalise this result to higher dimensions. This can be done by using
Kolmogorov's superposition theorem.

Theorem 2.23 ([14]). For everyd 2 N, there are2d? + d univariate, continuous, and increasing functiongq,

|
21 xd i
f(x)= Oq pq(Xp) (2.18)
g=1 p=1

wheregq, q=1;:::2d + 1, are univariate continuous functions dependingfon

We can combine Kolmogorov's superposition theorem and Proposition 2.21 to obtain the following
approximation theorem for realisations of networks with the special activation function from Proposition
2.21.

Theorem 2.24. Letd 2 N. Then there exists a consta@{d) > 0 and a continuous activation functio¥ such that
for every functiorf 2 C([0;1]%) and every > OthereisaNN "4 with M()  C(d),andL() =3 such that

f;;d o
f R L (2.19)

We have that there existsC 2 R such that
ran( pq) [ C;Cl forall p=1;:::;d;9=1;:::;2d+1:
We de ne, with Proposition 2.21,

q:o:: eld FP 1,9+ 0+ 2:q30-:::- dgi 0 :



_ xd
R( % °)(x) p:q(Xp) do (2.20)
p=1

and, by construction, M( 9  3d. Nowde ne,for 1> 0,

f — 1;2d+1 . T 1] 1, 0. 2,0cucn- 2d+1; o. .
= BN PG Giann Geaia) P Lios Ziognn 24D (2.21)

where 9t 1 js according to Remark 2.22 with K = C +1.

Per de nition of it follows that L ( fo) 3 and the size of fo is independent of g and ;. We also have
that
o1
f — ; ; .
R v, = R( 9q 1) R(Qo).
g=1
We have by Proposition 2.21 that, for xed 1,the map R( 9% 1) is uniformly continuouson [ C 1;C +1]
forall q=1;:::;2d+1and o 1.
Hence, we have that, for each~> 0, there exists - > 0such that

JRC %) RO M =

forall x;y2[ C 1;C+1]sothatjx Yj - in particular this statement holds for ~= ;.
It follows from the triangle inequality, (2.20), and Proposition 2.21 that
201 |
R fo; . fl R( % )R( *°) gy P
g=1 p=1 1
A1 xd '
R( % 1)(R( *°) R( %) piq
=t ! i 1
_ xd
+ R( %1) piq Gq pig
p=1 p=1 1
%ﬂ
= |0;1+” 0;1:
p=1
Choosingd g < ,,we havethatl ., 1. Moreover, Il 1 by construction .
Hence, for every 1=2 > > 0, there exists o; 1 suchthat R fD f 1 2d+1) ; . We de ne
fd = T which concludes the proof. O

Without knowing the details of the proof of Theorem 2.24 the statement that any function can be arbitrarily
well approximated by a xed-size network is hardly believable. It seems as if the reason for this result to
hold is that we have put an immense amount of information into the activation function. At the very least,
we have now established that at least from a certain minimal size on, there is no aspect of the architecture of a
NN that fundamentally limits its approximation poweWe will later develop fundamental lower bounds on
approximation capabilities. As a consequence of the theorem above, these lower bounds can only be given
for speci c activation functions or under further restricting assumptions.

3 RelLU networks

We have already seen a variety of activation functions including sigmoidal and higher-order sigmoidal
functions. In practice, a much simpler function is usually used. This function is called recti ed linear unit

14



(ReLU) Itis de ned by

x forx O

X 7' % (x) = (x)+ =maxf0O;xg= 0 else

(3.1
There are various reasons why this activation function is immensely popular. Most of these reasons are based
on its practicality in the algorithms used to train NNs which we do not want to analyse in this note. One
thing that we can observe, though, is that the evaluation of % (x) can be done much more quickly than that
of virtually any non-constant function. Indeed, only a single decision has to be made, whereas, for other
activation functions such as, e.g., arctan, the evaluation requires many numerical operations. This function is
probably the simplest function that does not belong to the class described in Example 2.1.

One of the rst questions that we can ask ourselves is whether the ReLU is discriminatory. We observe
the following. For a2 R, by < b, and every x 2 R, we have that

Ha(x) = % (ax ab+1) %(ax ab) %(ax akp)+ %(ax akp 1)! 1y, forall

Indeed, for x <b; 1=a, we havethatH,(x)=0.1flpb l1=a<x<bj;,thenHy(X)=a(x b +1=a 1
Ifby <x<bjy thenHyi(X) = %(ax abp+1) %(ax aby)=1.I1fb x<b,+1=a thenHy(x) =
1 %((ax abkp)=1 ax ab 1 Finally,if x by +1=athenH,(x)=0.We depict H, in Figure 3.1.

b i b b, b+ 1
Figure 3.1: Pointwise approximation of a univariate indicator function by sums of ReLU activation functions.

The argument above shows that sums of ReLUs can pointwise approximate arbitrary indicator function.
If we had that z

% (ax+ bd (x)=0;
K

fora 2M andall a2 RYand b2 R, then this would imply
z
1[b1;b2](ax)d (x)=0
K

forall a2 RY and by, < b,. At this point we have the same result as in (2.1). Following the rest of the proof of
Proposition 2.6 yields that % is discriminatory.

We saw in Proposition 2.18 how higher-order sigmoidal functions can reapproximate B -splines of arbitrary
order. The idea there was that, essentially, through powers of x?, we can generate arbitrarily high degrees of
polynomials. This approach does not work anymore if g = 1. Moreover, the crucial multiplication operation
of Equation (2.14)cannot be performed so easily with realisations of networks with the ReLU activation
function.

If we want to use the local approximation by polynomials in a similar way as in Corollary 2.19, we have
two options: being content with approximation by piecewise linear functions, i.e., polynomials of degree one,
or trying to reproduce higher-order monomials by realisations of NNs with the ReLU activation function in a
di erent way than by simple composition.

Let us start with the rst approach, which was established in [12].
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3.1 Linear nite elements and ReLU networks

We start by recalling some basics on linear nite elements. Below, we will perform a lot of basic operations
on sets and therefore it is reasonable to recall and x some set-theoretical notation rst. For a subset A of a
topological space, we denote by co(A) the convex hullof A, i.e., the smallest convex set containingA. By A we
denote the closure of, i.e., the smallest closed set containingA. Furthermore, int A denotes theinterior of A,
which is the largest open subset of A. Finally, the boundary ofA is denoted by @Aand @A= A nint A.
Letd 2 N, RY. AsetT P () sothat
[
T=

T =( i)MI, where each ; is ad-simplex*, andsuchthat ;\ ; @\ @ isann-simplexwith n<d for
every i 6 j is called a simplicial mesh of . We call the ; the cells of the mesh and the extremal points of the
i,i=1:::; M1, the nodes of the meskVVe denote the set of nodes by( i)i“ig .

Figure 3.2: A two dimensional simplicial mesh of [0; 1]°. The nodes are depicted by red x's.

S
We say that a meshT = ( i)i'\i{ is locally convexif for every itholdsthat f ; : ; 2 jgis convex.
For any mesh T one de nes the linear nite element space

Vr = f2C(): fj anelinearforalli=1;:::;M7

Since an a ne linear function is uniquely de ned through its valueson  d + 1 linearly independent points, it
is clear that every f 2 Vr is uniquely de ned through the values (f ( i)) i“iy . By the same token, for every

Fori =1;:::;My wede nethe Courantelements;t 2 Vr to bethose functions thatsatisfy .1 ( j)= i; .
See Figure 3.3 for an illustration.

Proposition 3.1. Letd 2 N andT be a simplicial mesh of RY, then we have that

M
f= 10 ur

i=1

holds for every 2 Vr.

XA d-simplex is a convex hull of d+ 1 points vg;:::;vq suchthat (vi Vvo);(v2 Vo);:::;(vq Vo) are linearly independent.
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Figure 3.3: Visualisation of a Courant element on a mesh.

As a consequence of Proposition 3.1, we have that we can build every function f 2 Vr as the realisation

of a NN with ReLU activation function if we can build T foreveryi=1;:::;My.
We start by making a couple of convenient de nitions and then nd an alternative representation of BT
We de ne, for i;j =1;::: My,
: . _ [
F(G)="fj2fL:::;Mr9: 12 ;0; G(i) = i (3.2)
j2F (i)
HGGi) =12 j; «6 i0; (i) =f « 2G(i)g: (3.3)

Here F (i) is the set of all indices of cells that contain ;. Moreover, G(i) is the polyhedron created from
taking the union of all these cells.

Proposition 3.2. Letd 2 NandT be a locally convex simplicial mesh of RY. Then, forevery=1;:::; My, we
have that
iT=max 0, min g ; 3.4
i T AN 0] (3.4)

whereg; is the unique a ne linear function such thag; ( ) =0 forall 2 H(j;i)andg (i) =1.

assume that ; 2 int G(i).
Step 1: We show that

[
@Gi) = co(H (j;1)): (3.5)
j2F ()

The argument below is visualised in Figure 3.4. We have by convexity that G(i) = co(l (i)). Since ; liesin
the interior of G(i) we have that there exists > OsuchthatB ( ;) G(i). By convexity, we have that also the
open setco(int ;B ( i)) isasubset ofG(i). Itis not hard to see that  nco(H (k;i)) co(int ;B ( ;)) and

{ The case | 2 @Gi) needs to be treated slightly di erently and is left as an excercise.
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Figure 3.4: Visualisation of the argument in Step 1. The simplex  is coloured green. The grey ball around
iisB ( i). The blue representsx.

hence  nco(H (k;i)) lies in the interior of G(i). Since we also have that@ Gi) Skzp(i) @y, we conclude
that [
@Gi) co(H (j;1)):
i2F (i)

Now assume that there is j such that co(H (j;i)) 6 @®Gi). Sinceco(H (j;i))  G(i) this would imply that
there existx 2 co(H (j;i)) such that x is in the interior of G(i). This implies that there exists °> 0such that
BY%x) G(i). Hence, the line from  to x can be extended for a distance of =2to a point x 2 G(i)n ;. As
X must belong to a simplex ; thatalso contains ;, we conclude that ; intersects the interior of ; which
cannot be by assumption on the mesh.

Step 2:

For eachj, denote by H (j;i ) the hyperplane through H (j;i). The hyperplane H(j;i) splits RY into two
subsets, and we denote byH ™ (j; i ) the set that contains ;.

We claim that

\ A
G(i) = H™@i): (3.6)
j2F ()

This is intuitively clear and sketchqd in Figure 3.5.

We rst prove the case G(i) i2r i) H It (j:i ). Assume towards a contradiction that x°2 G(i) is a point
in RINHM ;i) foraj 2 F(i)

Since ; does not lie in the boundary of G(i) there exists > OsuchthatB ( ;) G(i) and therefore,
by convexity co(B ( ;);x% G(i). Since ; and x%are on di erent sides of H(j;i), we have that there is a
point X2 H (j;i) and °> 0, suchthatB o(x°y G(i). Therefore,co(B o(x%y;int co(H (j;i))) G(i) is open.
In particular, co(B o(x%;int co(H (j;i))) \ @Gi) = ?. We conclude that int co(H (j;i)) \ @Gi) = ?. This
constitutes a contradiction to (3:5).

Next we prove that G(i) 26 H™ (7). Let x%°%2G(i). Next, we show that x°ies in R nH ™ (j;i )
for at least one j. The line between x°%nd ; intersects G(i) and, by Step 1, it intersectsco(H (j;i)) for a
j 2 F(i). Itis also clear that x°%s not on the same side as ;. Hence x°°%2H ™ (j;i ).

Step 3: Foreach ; 2 I (i), we have that gc( ;) Oforall k2 F(i).
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G(i)

H(j1:i) H(j1:1)

Figure 3.5: The setG(i) and two hyperplanes H(j1;i), H(j2;i). SinceG(i) is convex and H (j;i ) extends its
boundary it is intuitively clear that G(i) is only on one side of H(j;i ) and that (3.6) holds.

This is because, by(3.6) G(i) lies fully on one side of each hyperplane H(j;i),j 2 F(i). Sincegk vanishes
on H(k;i) and equals1on ; we conclude that gc( j) Oforall k2 F(i)
Step 4: Forevery k 2 F (i) we havethatgc g on  forall j 2 F(i)

Iffor j 2 F(i),g () o()foral -2 ,then,since x =co(f -: -2 kg),weconcludethatg  o.
Assume towards a contradiction that g;( ) <gx( ) foratleastone - 2 I(i). Clearly this assumption cannot
hold for - = ; sincethereg ( i)=1= o i). If -6 ;,theng( ) =0 implying g ( ) < 0. Together

with Step 3 this yields a contradiction.

Step 5: For eachz 62G(i), we have that there exists at least onek 2 F (i) such that gc(z) O.

This follows as in Step 3. Indeed, if z 625(i) then, by (3.6) we have that there is a hyperplane H(k;i) so
that z does not lie on the same side as ;. Hencegk(z) O.

Combining Steps 1-5 yields the claim (3.4). O

Now that we have a formula for the functions ;. 1, we proceed by building these functions as realisations
of NNss.

Proposition 3.3. Letd 2 N andT be a locally convex simplicial mesh of RY. Letk; denote the maximum
number of neighbouring cells of the mesh, i.e.,

kt = ma>h</I #fj:i2 j0: 3.7)

L( i)= dogy(kr)e+2; andM( i) C (kr + d)kr (log,(kt))
for a universal constant > 0, and
R(C )= irT; (3.8)

where the activation function is the ReLU.
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Proof. We now construct the network the realisation of which equals (3.4). The claim (3.8)then follows with
Proposition 3.2.
We start by observing that, for a;b2 R,

atb ja b 1

minfa; bg = = =(%((@+h %(a b %@ b %®b a):

2 2 2
Thus,de ning  ™M":2 := (( Ay;0); (Az; 0)) with
2 3
1 1
— 1 12. Lo
A, ._g 116 A= L oL
1 1

yields R()( a;b = minfa;bg, L() =2 and M() = 12 . Following an idea that we saw earlier for the
construction of the multiplication network in (2.15), we construct for p 2 N even, the networks

emin ;p = FP min ;2.:.:. min ;2
i Y
p=2 times
and for p= 29
min;p — emin;2 @min;4 emin;p.

It is clear that the realisation of ™" P js the minimum operator with p inputs. If pis not a power of two then
a small adaptation of the procedure above is necessary. We will omit this discussion here.
We see thatL( ™" P) = dlog,(p)e+ 1. To estimate the weights, we rst observe that the number of

neurons in the rst layer of €™n:P js bounded by 2p. It follows that each layer of ™"P has less than2p
neurons. Since all a ne maps in this construction are linear, we have that

MNP = ((Aq;b); (A b)) = (AL 0): (AL 0): (3.9)
We have that g = Gi()+ « for « 2 Rand G, 2 R, Let
& =P ((G1; 1):((Gz; 2)) it Gargy: #F ()

Clearly, 2 has one layer,d dimensional input, and # F (i) many output neurons.
We de ne, for p:=# F(i), _ _
"= (@oy(o) M ®
Per construction and (3.4), we have that R( “T) = ;1. Moreover, L( “T))= L( ™"P)+1= dog,(p)e+2.
Also, by construction, the number of neurons in each layer of "7 is bounded by 2p. Since, by(3.9), we have
that

with A 2 RN N 1 and by 2 RP, we conclude that
) S b
M( ") p+  KAky p+ N iN- p+2dp+(2p)*(dogy(p)e):
- -
Finally, per assumption p  kr which yields the claim. O

As a consequence of Propositions 3.3 and 3.1, we conclude that one can represent every continuous
piecewise linear function on a locally compact mesh with N nodes as the realisation of a NN with CN
weights where the constant depends on the maximum number of cells neighbouring a vertex kr and the
input dimension d.
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Theorem 3.4. LetT be a locally convex partition of RY%:d 2 N. LetT haveMy and letkr be de ned as ir3.7).
Then, for every 2 Vg, there exists a NN f such that

L " dlog,(kr)e+2;
M( ) CMy (kr + d)kr log, (kr);
R T =t

for a universal constant > 0.

Remark 3.5. One way to read Theorem 3.4 is the following: Whatever one can approximate by piecewise a ne linear,
continuous functions witiN degrees of freedom can be approximated to the same accuracy by realisations of NNs with
C N degrees of freedom, for a cons@ntf we consider approximation rates, then this implies that realisations of
NNs achieve the same approximation rates as linear nite element spaces.

For example, for :=[0; 1]%, one has that there exists a sequence of locally convex simplicial rfiegiies with
M+ (Tn) . nsuch that

JNf K gk o TkE Ky 220 @2 () ;

forallf 2 W22d=(d*2) () see, e.g., [12].

3.2 Approximation of the square function

With Theorem 3.4, we are able to reproduce approximation results of piecewise linear functions by realisations
of NNs. However, the approximation rates of piecewise a ne linear functions when approximating Ccs
regular functions do not improve for increasing sassoonass 1, see, e.g., Theorem 2.16. To really bene t
from higher-order smoothness, one requires piecewise polynomials of higher degree.

Therefore, if we want to approximate smooth functions in the spirit of Corollary 2.19, then we need to be
able to e ciently approximate continuous piecewise polynomials of degree higher than 1 by realisations of
NNs.

It is clear that this emulation of polynomials cannot be performed as in Corollary 2.19, since the ReLU is
piecewise linear. However, if we allow su ciently deep networks there is, in fact, a surprisingly e ective
possibility to approximate square functions and thereby polynomials by realisations of NNs with ReLU
activation functions.

To see this, we rst consider the remarkable construction below.

E cient construction of saw-tooth functions: Let
"= (AL b); (Az; 0));
where 0 1 0 1
2 0
Ai=@2A; p=@ 1A; A,=[1; 21]
2 2
Then

R( ")(xX)= %(@2x) 2% (2x 1)+ %(2x 2)

andL( ")=2,M( ")=8,Np=1;N;=3;N3=1.Itisclearthat R( ") is a hat function. We depict it in
Figure 3.6.

A quite interesting thing happens if we compose R( ") with itself. We have that
) @ RCY

n times

R(|A_{Z_A}) =R(

n times |

A
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is a saw-tooth function with 2" ! hats of width 2 " each. This is depicted in Figure 3.6. Compositions are
notoriously hard to picture, hence it is helpful to establish the precise form of R(I " {z “}) formally. We

n times
analyse this in the following proposition.

Proposition 3.6. Forn 2 N, we have that

Fo=RO_zy)

n times
satis es, forx 2 (0;1),
P00 liem2 0 ) o2 127G+ D2 O} odd. 310)
andF, = 0 forx 620; 1). Moreover,L(lA_{Z_A}) = n+1andM (lA_{Z_A}) in 2
n times n times
Proof. The proof follows by induction. We have that, for x 2 [0; 1=2],
R( ")(x) = % (2x) =2x:
Moreover, for x 2 [1=2; 1] we conclude
R( ")(x)=2x 2(2x 1)=2 2x
Finally, if x 620; 1), then
%(2X) 2%(2x 1)+ %(2x 2)=0:
This completes the casen = 1. We assume that we have shown (3.10) forn 2 N. Hence, we have that
Fas1 = Fa R( ") (3.11)

where F, satises (3.10) Letx 2 [0;1=2]and x 2 [i2 " L;(i+1)2 " ];ieven. ThenR( ")(x) = 2x 2
[(i2 ™;(i+2)2 "];i even. Hence, by (3.11), we have

Fraa(x)=2"2x i2 M=2"1(x i2 " 1.

If x 2 [1=2;1]and x 2 [i2 " L;(i+1)2 " 1];ieven thenR( ")(x)=2 2x2[2 (i+1)2 ™2 i2"]=
[T i 1)2 "1 D2 "]=[j2 "i(j+1)2 "Jforj =@" i 1)odd. We have, by (3.11),
Fra(x)=2"(G2" (2 22)=2"(2 2"(+1) (@2 2))
=2"2x 2 "(i+1)=2"1(x 2" (i+1):

The cases fori odd follow similarly. If x 620;1), then R( ")(x) = 0 and per (3.11)we have that F,,.1 (X) =0.
Itis clear by De nition 3.12 that L(| A_{Z A}) = n+1. Toshow that M| A_{Z_A}) 12n 2, we

n times n times
observe with
= ((A;by);: (AL b))
A N P
that M( ) n:‘*f- N- {N- + N- (n 1)(32+3)+ NoN7+ N1+ NyNp+1 + Np+r = 12(n
1)+3+3+3+1=12 n 2,whereweusethatN- =3 forall1 ~ nandNo= N_ =1. 0
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Figure 3.6: Top Left: Visualisation of R( ") = F;. Bottom Right: Visualisation of R( ") R( ") = F,,
Bottom Left: F, for n =4,

Remark 3.7. Proposition 3.6 already shows something remarkable. Consider a two layer netwtk input
dimension 1 andN neurons. Then its realisation with ReLU activation function is given by

X
R() = G%(ax+h) d;
j=1

forc;a;h;d2 R. Itis clear thatR() is piecewise a ne linear with at mos¥l () pieces. We see, that with this
construction, the resulting networks have not more thif) pieces. However, the functiéf, from Proposition 3.6

M ()+2

has atlease™ 1= — linear pieces.
The functionF, is therefore a function that can be very e ciently represented by deep networks, but not very
e ciently by shallow networks. This was rst observed in [35].

The surprisingly high number of linear pieces of Fj, is not the only remarkable thing about the construction
of Proposition 3.6. Yarotsky [38] made the following insightful observation:

Proposition 3.8 ([38]). For everyx 2 [0;1]andN 2 N, we have that

2 X+X\I Fn(X) 2 2N 2.
22n
n=1

X

(3.12)
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Proof. We claim that

-, X Fn
Hy = x o (3.13)
n=1
is a piecewise linear function with breakpoints k2 N where k =0;:::;2V, and Hy (k2 V) = k?2 2N . We
prove this by induction. The result clearly holds for N = 0. Assume that the claim holds for N 2 N. Then we
see that .
_ N+1 |
Hy  Hina = N7 -
Since, by Proposition 3.6,Fy +1 is piecewise linear with breakpoints k2 N *where k =0;:::;2N*! and Hy
is piecewise linear with breakpoints "2 N *where > =0;:::;2N*! even, we conclude that Hy +1 is piecewise
linear with breakpoints k2 N where k =0;:::;2Y*1 . Moreover, by Proposition 3.6, Fy +1 vanishes for all

k2 N 1 where k is even. Hence, by the induction hypothesis Hy+1 (k2 N 1) = (k2 N 1)2for all k even.
To complete the proof, we need to show that

Fn+
v (k2 N = Hy®k2 N Y (k2 N H

forall k odd. SinceHy islinearon [(k 1)2 N 1);(k+1)2 N 1)], we have that
Hy (k2 M 1) (k2 N 1)2=% (k 12N H2+((k+12 N H2 (k2 N 12 (3.14)
=2 N 2 % (k ) +(k+1)? K
=2 AN —p AN EL (2 N 1)
where the last step follows by Proposition 3.6. This shows that Hy.; (k2 N 1) = (k2 N )2 forall k =
Finally, let x 2 [k2 N;(k+1)2 N],k=0;:::;2Y 1, then

(k+1)2 k2 22N )

jHa (X)) x%j= Hy  x2=(k2 N)2+ >N (x k2 Ny x2 (3.15)

where the rststep is because x 7! x? is convex and therefore its graph lies below that of the linear interpolant
and the second step follows by representing Hy locally as the linear map that intersects x 7! x? atk2 N and
(k+1)2 N,
Since(3.15)describes a continuous function on [k2 N;(k +1)2 N]vanishing at the boundary, it assumes
its maximum at the critical point
1 (k + 1)2 k2 2 2N 1

— — N _— N 1_ -~ N 1.
=3 5 = S@k+12 N =(@2k+1)2 =2 Nt

for > 2f1;:::2N*1 godd. We have already computed in (3.14) that
JHN(x ) (x )3 2 2N
This yields the claim. O

Equation 3.12 and Proposition 3.6 make us optimistic that, with su ciently deep networks, we can
approximate the square function very e ciently. Before we can do this properly, we need to enlarge our
toolbox slightly and introduce a couple of additional operations on NNSs.
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Figure 3.7: Visualisation of the construction of Hy of (3.13).

RelLU speci c network operations ~ We saw in Proposition 2.11 that we can approximate the identity func-
tion by realisations of NNs for many activation functions. For the ReLU, we can even go one step further and
rebuild the identity function exactly.

Lemma 3.9. Letd 2 N, and de ne
4= ((Ag; ) ; (A b))

with
— ldrs . =0 — : =0
Aq = b =0; Ap:= ldge Idge : by:=0:
Ide
ThenR( ') =1d ga.
Proof. Clearly, for x 2 R4, R( '9)(x) = % (x) %( X)= x: O

Remark 3.10. Lemma 3.9 can be generalised to yield emulations of the identity function with arbitrary numbers of
layers. For eacti 2 N, and eaclh. 2 N ,, we de ne
0 1

L= I?;;d ;0 ;fIdRZd;O);:{'7:;(Idde;O});([Idej Idga]; 0)A :

L 2times

23
|

ForL =1, one can achieve the same bounds, simply by setﬂﬂlg:: ((1d ge;0)).

Our rst application of the NN of Lemma 3.9 is for a rede nition of the concatentation. Before that, we
rst convince ourselves that the current notion of concatenation is not adequate if we want to control the
number of parameters of the concatenated NN.

Per de nition we have tham () =2 N.
Moreover, we have that
=(( A1;0);(A1A2;0);(A2;0)):

It holds thatA1A, 2 RN N and every entry oA A, equalsl. HenceM ()= N + N2+ N.
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Example shows that the number of weights of networks behaves quite undesirably under concatenation.
Indeed, we would expect that it should be possible to construct a concatenation of networks that imple-
ments the composition of the respective realisations and the number of parameters scaleslinearly instead of
guadraticallyin the number of parameters of the individual networks.

Fortunately, Lemma 3.9 enables precisely such a construction, see also Figure 3.8 for an illustration.

De nition 3.12. LetLi;L, 2 N,andlet ' = ((AL;b);:::; (AL ;B ) and 2 = ((Af;B);:::5 (A, 1F))) be
two NNs such that the input layer of ! has the same dimensidras the output layer of 2. Let '? be as in Lemma
3.9.

Then thesparse concatenation of *and 2 is de ned as

Remark 3.13. Itis easy to see that
] 1

) !
PfE (ATBD (AR, G, ) AALZZ : bEEZ AT AT b S(AZE) (AL L)
L2 2

hasL; + Ly layersandthaR( ¥  2)=R( ') R( ?)andM( ' 2) 2M( H+2M( ?).

Approximation of the square: ~ We shall now build a NN that approximates the square function on [0; 1].
Of course this is based on the estimate (3.12).

Proposition 3.14 ([38, Proposition 2]). Let1=2> > 0. There exists a NN 5% such that, for ! 0,

L( °% )= 0(log,(1=)) (3.16)
M( %)= O(logs(1=)) (3.17)
R( S )(x) x* (3.18)

for allx 2 [0; 1]. In addition, we have thaR( *% )(0)=0.
Proof. By (3.12), we have that, forN = d log,( )=2e, it holds that, for all x 2 [0; 1],

XE(x
X2 X+ gz(n) (3.19)
n=1
Wedene,for n=1;:::;N,
n= fhon (|A {z A})3 (3.20)
n times

Thenwe havethatL( )= N n+ L(l " {z A}) = N +1 by Proposition 3.6. Moreover, by Remark 3.13,

n times

M( ) 2M( £y n)+2|\/|(|“_{Z_“}) 4N  n)+2(12n 2) 24N; (3.21)

n times

where the penultimate inequality follows from Remark 3.10 and Proposition 3.6.
Next, we set
o= 1 1= 2N 00 PN o N

Per construction, we have that

X
R(C*)()=R gha 0 22R( )= x
n=1 n=1
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Figure 3.8: Top: Two neural networks, Middle: Sparse concatenation of the two networks as in De nition
3.12,Bottom: Regular concatenation as in De nition 2.9.

and, by (3.19) we conclude (3.18) for all x 2 [0; 1], and that R()(0) =0 . Moreover, we have by Remark 3.13
that

L(S)=L L 1= 22N 50 +L P Sy uiis v =N+2=d logy()=2e+2:
This shows (3.16). Finally, by Remark 3.13
M(S¥) 2M 1, 1=4;:::;; 22N .0 +2M P| M 1N
=2(N+1)+2 My W M ( n)
n=1

X
=2(N+1)+4(N+2)+2  M( )
n=1

X
6(N +1)+2 24N =6(N +1)+48 N?;
n=1
where we applied (3.21) in the last estimate. Clearly,

6(N +1)+48N?=0 N2 ;forN!1 ;
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and hence
M ( %)= O logz(1=) ; for ! 0

which yields (3.17). O

Remark 3.15. In[29, Theorem 5], a proof of the result above is given that does not require Proposition 3.8, but instead
is based on three fascinating ideas:

Multiplicafion can be approximated by nitely many semi-binary multiplications: Forx 2 [0; 1], we
write x = \1:1 x-2 . Then
x X
X y= 2 xy= 2 xy+0@2 V), forN!1
‘=1 ‘=1

Multiplication on [0; 1] by O or 1 can be build with a single ReLU: It holds that

. 2y ifx =1
0, N =
A2 y+rx 1) 0 else
=2 xvy:
Extraction of binary representation is e cient: We have, by Proposition 3.6, thit vanishes on all2 "~ for
i=0;:::;2 evenandequalslona fori =0;:::;2 odd. Therefore
I
X o
Fn 2 X = X

By a short computation this yields that for al2 [0; 1]thatFy (x 2 N 1) > 1=2;if xy =1 andFy (x
2 N 1) 1=2 ifxy =0. Hence, by building an approximate Heaviside functign ¢.5 with ReLU realisations
of networks, it is clear that one can approximate the map x-.

Building N of the binary multiplications therefore requinssbit extractors andN multipliers by 0=1. Hence, this
requires of the order &f neurons, to achieve an errordfN |

3.3 Approximation of smooth functions

With the emulation of the square function on [0; 1] we have, in principle, a way of emulating the higher-order
sigmoidal function x2 by ReLU networks. As we have seen in Section 2.5, sums and compositions of these
functions can be used to approximate smooth functions very e ciently.

Approximation of multiplication: Based on the idea, that we have already seen in the proof of Propo-
sition 2.18, in particular, Equation (2.14) we show how an approximation of a square function yields an
approximation of a multiplication operator.

Proposition 3.16. Letp2 N,K 2 N, 2 (0;1=2). There exists a NN ™!t P: sych thatfor | 0

L( ™Ry = O(log,(K) log,(1=)) (3.22)
M ( ™Ry = O(log,(K) log3(1=)) (3.23)
w
R( mult ;p; )(X) X~ : (3-24)
=1
forallx = (X1;X2;:::5%p) 2 [ K;K JP. MoreoverR( ™t )(x) = 0 if x- = 0 for atleastoné p. Here the

implicit constant depends gmonly.

28



Proof. The crucial observation is that, by the parallelogram identity, we have thatfor x;y 2 [ K;K ]
!

Ly Koyt ox y
Y= K K
!
_K2 Rty %X Y) T Ry, %R x+y) C
T4 K K K K
We set
000 1 1 1

H
1
(o
(QPT
[N
[
>0
Qo
>0
X‘H
o P
(@
= O
= O
I
>0
Q
>
o
N
1
A
NIE
NTEN
N
IS

Now we de ne

Itis clear that, forall x;y 2 [ K;K ],
R mult ;2; (x;y) Xy

Moreover, the size of ™32 s up to a constant that of % =K *. Thus (3.23)(3.24)follow from Proposition
3.14. The construction for p > 2 follows by the now well-known stategy of building a binary tree of basic
multiplication networks as in Figure 2.4. O

A direct corollary of Proposition 3.16 is the following Corollary that we state without proof.
Corollary 3.17. Letp2 N,K 2 N, 2 (0;1=2). There exists a NN P°":P: sych that, for ! 0,
L( PP )= O(log,(K) log,(1=))

M ( Po"P) = O(log,(K) log;(1=))
IR( PMP)(x) XP)

forallx 2 [ K;K ]. MoreoverR( Po%:P: )(x) =0 if x = 0. Here the implicit constant depends pronly.

Approximation of B-splines: Now that we can build a NN the realisation of which is a multiplication of
p 2 N scalars, it is not hard to see with (2.10) that we can rebuild cardinal B -splines by ReLU networks.

Proposition 3.18. Letd;k;> 2 N,k 2,t2 RY,1=2> > 0. There exists a NN g;t;k suchthatfor !' 0

L(d;k) = L( % )= O(log,(1=)); (3.25)
M (d;Kk) = M ( % ) = O(log;(1=)); (3.26)
R( %)) N S () s (3.27)

forallx 2 RY.
Proof. Clearly, it is su cient to show the resultfor ~ =0 andt =0. We have by (2.10) that

1 X

& D ( 1) k (x )k 1:forx 2 R; (3.28)
L

Nk (x) =
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It is well known, see [31], that supp Nk =[0;k]and kNxk; 1. Let > O, then we set

0 1
1 k k .k . 1L . 1

.= . s . @ pow:k 1; s pow:k 1, A
k; (k 1)| 0 ) 1 ’ ’ ( 1) Kk , 0 FP | ’ {'7 ’ }

k+1 times

((A1;by); (Id ges 5 0));

where
Ar=[LLsa; b= 0Lk
and Idge+ is the identity matrix on R¥*1. Here K := k +1 in the de nition of ~ P%k 1 via Corollary 3.17.
Itis now clear, that we can nd > 0so that

IR( k )(X) N k()i =(4d2" %); (3:29)

forx 2 [ k 1;k+1]. With su cient care, we see that, we canchoose = ( ),for ! 0. Hence, we can
conclude from De nition 3.12that L = L( . )= O(L( ™t k*: )) = O(log,(1=)),and M ( . )=
O( Mutk+1: )2 O(logs(1=)),for ! Owhichyields (3.25)and (3.26) Atthispoint, R( . )onlyaccurately
approximates Ny on [ k 1;k + 1]. To make this approximation global, we multiply R( k. ) with an
appropriate indicator function.

Let

o= 115100 ko k1] (L 1 1,1];0) ¢

ThenR( ') is a piecewise linear spline with breakpoints  1;0;k; k + 1. Moreover, R( ') is equal to 1 on
[0; k], vanishes on[ 1;k +1]¢, and is non-negative and bounded by 1. We de ne

e .— mult;2;=(@d2? 1) . cut
ky -~ P ki 1L 2

Since the realisation of the multiplication is 0 as soon as one of the inputs is zero by Proposition 3.16, we
conclude that

R € (x) Nk(x) =@d7); (3.30)

for all x 2 R. Recall that

\d
Ndox(X) = Ni(x)); for x = (x1;:::;%a) 2 R%:

i=1
Now we de ne
d — mult;d;=2 pEpre; ... .
- i FP(8x 510 )
00k | {z_—}
d times
We have that
§ g Y Y § Y
Nook(X) R gox  (X) N (%j) R € () + R Gox (X R € (%) :
i=1 i=1 i=1
Additionally, we have by (3.30) that
A
R € (g) R EMUAZ2 REP(Se /1% D) =2
=1 d times
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forall x 2 RY. Itis clear, by repeated applications of the triangle inequality that for a 2[0,1],b 2[ L 1]

cand

3  (@+h) d 1+ max jaj  max jpj d2 ' max jbj:
Hence,
¥ v
N (Xj) R & (x) =2
j=1 j=1

This yields (3.27). The statement on the size of §,,. follows from Remark 3.13. O

Approximation of smooth functions: Having established how to approximate arbitrary B-splines with
Proposition 3.18, we obtain that we can also approximate all functions that can be written as weighted sums of
B-splines with bounded coe cients. Indeed, we can conclude with Theorem 2.16 and with similar arguments
as in Theorem 2.14 the following result. Our overall argument to arrive here followed the strategy of [34].

Theorem 3.19. Letd 2 N,s > > Oandp 2 (0;1 ]. Then there exists a consta@t > 0 such that, for every
f 2 CS([0; 1]%) with kf kcs  1and everyl=2> > 0, there exists a NN such that

L() Clogy(1=); (3:31)
M() C (3.32)
ki R() k, (3.33)

Here the activation function is the ReLU.

Proof. Let f 2 CS([0;1]%) with kfkcs 1andlets> > 0. By Theorem 2.16 there exist a constantC > 0
and, forevery N 2 N, ¢ 2 Rwith jgj CandB; 2BKfori=1;:::;N andk = dse, such that

By Proposition 3.18, each of theB; can be approximated up to an error of N & =(CN) witha NN ; of

S

depth O(log,(N @ =(CN))) = O(log,(N)) and number of weights O(log5(N = =(CN))) = O(logs(N)) for
N1l .
We de ne

Itis not hard to see that, for N I'1
M( )= O(Nlogs(N)) andL( )= O(logy(N)):

Additionally, by the triangle inequality

t RCP), =N T

To achieve (3.33), we, therefore, need to choosdN = N = d( =2)%( e,
A simple estimate yields that L ( fN )= O(log,(1=)) for ! 0,i.e, (3.31). Moreover, we have that

N logs(N) 4d<(s )(=2)* 9logj(=2) C° % Jiogs( );
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for a constant C°> 0. It holds that log3( )= O( ) forevery > 0. Hence, forevery °> with s> O we
have d=(s ) 2 d=(s 9
logs( ) = O( ); for I 0

As a consequence we have thatM ( Y )= O( (s “)for 1 0. Since was arbitrary, thisyields (3.32) O

Remark 3.20. It was shown in B8] that Theorem 3.19 holds with = 0 but with the boundM ()
C %Slog,(1=). Moreover, it holds fof 2 CS([ K;K %) for K > 0, but the constanC will then de-
pend orK .

4 The role of depth

We have seen in the previous results that NNs can e ciently emulate the approximation of classical approxi-
mation tools, such as linear nite elements or B-splines. Already in Corollary 2.19, we have seen that deep
networks are sometimes more e cient at this task than shallow networks. In Remark 3.7, we found that
ReLU-realisations of deep NNs can represent certain saw-tooth functions with N linear pieces using only
O(log,(N)) many weights, whereas shallow NNs require O(N) many weights for N ! 1

In this section, we investigate further examples of representation or approximation tasks that can be
performed easily with deep networks but cannot be achieved by small shallow networks or any shallow
networks.

4.1 Representation of compactly supported functions

Below we show that compactly supported functions cannot be represented by weighted sums of functions of
the form x 7! % (ha; xi), but they can be represented by 3-layer networks. This result is based on [4, Section
3].

Proposition 4.1. Letd2 N;d 2. The following two statements hold for the activation funct¥én
If L 3, then there exists a NN with L layers, such thasupp R() = By, (0)%,
IfL 2, then, for every NN with L layers, such thasupp R() is compact, we have thR{( ) 0.

Proof. Itis clear that, for every x 2 RY, we have that

(%R(X°)+ % ( X)) = kxkg:
=1

Moreover, the function % (1 k xkj) is clearly supported on By.y, (0). Moreover, we have that % (1 k xKki)
can be written as the realisation of a NN with at least 3 layers.

Next we address the second part of the theorem. If L = 1, then the set of realisations of NNs contains
only a ne linear functions. It is clear that the only a ne linear function that vanishes on a set of non-empty
interior is 0. For L = 2, all realisations of NNs have the form

X
X 7! G% (hai:xi + b)+ d; (4.1)
i=1

a; 6 0 otherwise % (hg;; xi + k) would be constant and one could remove the term from (4.1) by adapting d
accordingly.

IJ
K Here kxkB ==~ d_; jxkjP forp2 (0;1 ).
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We next show that every function of the form (4.1) with compact support vanishes everywhere. For an
index i, we have that % (ha;; xi + Iy) is not continously di erentiable at the hyperplane given by

ba

ST aR

+272:27? g
Letf be afunction of the form (4.1). Wedene i j,if S = §;. Thenwe have that,for J 2 1;:::;Ng=
that & = & forall i;j 2 J. Hence,

G % (hey ; xi + be);

j23
is constant perpendicular to & forevery j 2 J. And since the sum is piecewise a ne linear, we have that it is
either a ne linear or not continuously di erentiable at every elementof  S;. We can write
0 1

X X
f(x)= @ %k (hg;xi+ Q)A +d:
J2f 1;:5N g= j23

oneJ 2f1:iiiNg= , ,; G%(hay;xi + Iy)isnotlinear, then f is not continuously di erentiable almost
everywhere in §; for j 2 J. SinceS; is unbounded, this contradicts the compact support assumption on f .
Onthe other hand, if, forall J 2f1;:::;Ng= ,wehavethat ;,; ¢ %(hg;xi + b)isanelinear, then f
is a ne linear. By previous observations we have that this necessitates f 0 to allow compact support of
f. O

Remark 4.2. Proposition 4.1, deals with representability only. However, a similar result is true in the framework of
approximation theory. Concretely, two layer networks are ine cient at approximating certain compactly supported
functions, that three layer networks can approximate very well, see e.g. [9].

4.2 Number of pieces

We start by estimating the number of piecewise linear pieces of the realisations of NNs with input and output
dimension 1 and L layers. This argument can be found in [35, Lemma 2.1].

Theorem 4.3. LetL 2 N. Let%be piecewise a ne linear witp pieces. Then, for every NNwith d=1;N| =1
andNq;:::;NL 1 N,we havethaR() has at mos{pN)- * a ne linear pieces.

Proof. The proof is given via induction over L. ForL =2, we have that

X1
R() = o %hey; xi + b) + d;
k=1

where ¢;ax;b;d 2 R. Itis not hard to see that if f;f, are piecewise a ne linear with nj; n, pieces each,
then f1 + f, is piecewise a ne linear with at most n; + n, pieces. Hence,R() has at mostNp many a ne
linear pieces.

Assume the statement to be proven for L 2 N. Let | +; be a NN with L +1 layers. We set

Itis clear, that

where for * = 1;:::;N_ eachh: is the realisation of a NN with input and output dimension 1, L layers, and
less than N neurons in each layer.
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For a piecewise a ne linear function f with ppieces, we have that% f has at mostp ppieces. Thisis
because, for each of thep-a ne linear pieces of f |let us call one of those pieces A R|we have that f is
either constant or injective on A and hence% f has at mostp linear pieces on A.

By this observation and the induction hypothesis, we conclude that % h; has at mostp(pN)- ! ane
linear pieces. Hence,

X
R( L+1)(X) = (AL+1 )k %hk (X)) + b+
k=1

has at mostNp(pN)- * = (pN)L many a ne linear pieces. This completes the proof. O

For functions with input dimension more than 1 we have the following corollary.

Corollary 4.4. LetL;d 2 N. Let%be piecewise a ne linear witp pieces. Then, for every NN with N_. =1 and
Ni;:::;Np 1 N,wehavethaR() has at mos{pN)- ! ane linear pieces along every line.

Proof. Every line in RY can be parametrized by R 3 t 7! xo + tv for xo;v 2 RY. For as in the statement of
corollary, we have that
R(O)( Xo + tv) = R( 0)(t);

where o =((v; X)), which gives the result via Theorem 4.3. O

4.3 Approximation of non-linear functions

Through the bounds on the number of pieces of a realisation of a NN with an piecewise a ne linear activation
function, we can deduce a limit on approximability through NNs with bounds on the width and numbers of
layers for certain non-linear functions. This is based on the following observation, which can, e.g., be found
in [10].

Proposition 4.5. Letf 2 C?([a;b]), fora < b < 1 so thatf is not a ne linear, then there exists a constant
c= c(f) > Osothat, foreverp 2 N,

kg fki >cp ?;

for all g which are piecewise a ne linear with at mogtpieces.

From this argument, we can now conclude the following lower bound to approximating functions which
are not a ne linear by realisations of NNs with xed numbers of layers.

Theorem 4.6. Letd;L;N 2 N, andf 2 C?([0;1]%), wheref is not a ne linear. Let%: R! R be piecewise a ne
linear with p pieces. Then for every NN with layers and fewer thaN neurons in each layer, we have that

ki R() ky ¢(pN) At D:

Proof. Let f 2 C2([0; 1]%) and non-linear. Then it is clear that there exists a point X and a vector v so that
t 7! f (Xp + tv) is non-linearin t = 0.

We have that, for every NN with d-dimensional input, one-dimensional output, L layers, and fewer
than N neurons in each layer that

ki R() ki kf(xo+ v) R()( Xo+ Vki ¢ (pN) 2t D;
where the last estimate is by Corollary 4.4 and Proposition 4.5. O

Remark 4.7. Theorem 4.6 shows that Theorem 3.19 would not hold with a xed, bounded number oflaa&soon
ass su ciently large. In other words, for very smooth functions, shallow networks yield suboptimal approximation
rates.

Moreover, no twice continuously di erentiable and non-linear function can be approximated with an error that
decays with a super polynomial rate in the number of neurons by NNs with a xed number of layers. In particular, the
approximation rate of Proposition 3.14 is not achievable by sequences of NNs of xed nite depth.
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5 High dimensional approximation

At this point we have seen two things on an abstract level. Deep NNs can approximate functions as well as
basically every classical approximation scheme. Shallow NNs do not perform as well as deep NNs in many
problems. From these observations we conclude that deep networks are preferable over shallow networks,
but we do not see why we should not use a classical tool, such as B-splines in applications instead. What is it
that makes deep NNs better than classical tools?

One of the advantages will become clear in this section. As it turns out, deep NNs are quite e cient in
approximating high dimensional functions.

5.1 Curse of dimensionality

The curse of dimensionalitys a term introduced by Bellman [ 3] which is commonly used to describe an
exponentially increasing di culty of problems with increasing dimension. A typical example is that of
function interpolation. We de ne the following function class, for d2 N,

( )

Fe= f2C(0;1%): supkD fk 1
j =1

If one de nes e(n; d) as the smallest number such that there exists an algorithm reconstructing every f 2 F 4
up to an error of e(n;d) from n point evaluations of f, then

e(n;d)=1
forall n  2b9=2¢ 1 see [20]. As aresult, in any statement of the form
e(n;d) Cgrn ";

we have that the constant Cy, depends exponentially on d.

Another instance of this principle can be observed when approximating non-smooth functions. For
example, in Theorem 2.16, we saw that the approximation rate, when approximating functions f 2 CS([0; 1]%)
deteriorates exponentially with the dimension d. In fact, the approximation rates of Theorem 2.16 are, up to
the , optimal under some very reasonable assumptions on the approximation scheme, see [8] and discussions
later in the manuscript. Hence, there is a fundamental lower bound on approximation capabilities of any
approximation scheme that increases exponentially with the dimension.

Careful inspection of the arguments above show that these arguments also apply to approximation by
deep NNs. Hence, whenever we say below, that NNs overcome the curse of dimensionalitgn we mean that
under a certain additional assumption on the functions to approximate, we will not see a terrible dependence
of the approximation rate on the dimension.

5.2 Hierarchy assumptions

We have seen in Corollary 2.19 and Theorem 3.19 that, to approximate aC? regular function by a NN with a
higher-order sigmoidal function or a ReLU as activation function up to an accuracy > 0, we need essentially

O( 93) many weights. In contrast to that, a d-dimensional function f so thatf (x) = id:1 g (Xi), where
all the g are one dimensional can be approximated using essentially dO( ') many weights, which is
asymptotically much less than O( %) for ! 0.

Itis, therefore, reasonable to assume that high dimensional functions that are build from lower dimensional
functions in a way that can be emulated well with NNs, can be much more e ciently approximated than
high dimensional functions without this structure.

This observation was used in [25] to study approximation of so-called compositional functions. The
de nition of these functions is based on special types of graphs.
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Denition 5.1. Letd;k;N 2 N and letG(d; k; N) be the set of directed acyclic graphs withvertices, where the
indegree of every vertex is at mésand the outdegree of all but one vertex is at least 1 and the indegree of exactly
vertices i<0.
ForG 2 G(d; k;N), let( i)\, be atopological ordering 6. In other words, every edge ; in G satis esi <] .
Moreover, for each> d we denote
Ti = fj: j iisanedge dBg;
andd, =# T, k.

With the necessary graph theoretical framework established, we can now de ne sets of hierarchical
functions.

De nition 5.2. Letd;k;N;s 2 N. LetG 2 G(d;k;N) and let, fori = d+1;:::;N, f; 2 CS(R%) with
kfikes(rai) 1 . Forx 2 RY, wedenefori = 1;:::;dv; = x; andv;(x) = fi(vi (X); 005V, (X)), where
juiinie 2Tiandji<ja< <jg.

We call the function

f [0 R; X 7! v (X)

acompositional function associated to G with regularity s. We denote the set of compositional functions associated
to any graph inG(d; k; N ) with regularity s by CF(d; k; N ; s).

We present a visualisation of three types of graphs in Figure 5.1. While we have argued before that it is
reasonable to expect that NNs can e ciently approximate these types of functions, it is not entirely clear
why this is a relevant function class to study. In[ 19, 25], it is claimed that these functions are particularly
close to the functionality of the human visual cortex. In principle, the visual cortex works by rst analysing
very localised features of a scene and then combining the resulting responses in more and more abstract
levels to yield more and more high-level descriptions of the scene.

If the inputs of a function correspond to spatial locations, e.g., come from several sensors, such as in
weather forecasting, then it might make sense to model this function as network of functions that rst
aggregate information from spatially close inputs before sending the signal to a central processing unit.

Compositional functions can also be compared with Boolean circuits comprised of simple logic gates.

Let us now show how well functions from CF(d;k; N ;s) can be approximated by ReLU NNs. Here we
are looking for an approximation rate that increases with s and, hopefully, does not depend too badly on d.

Theorem 5.3. Letd; k;N;s 2 N. Then there exists a consta@t> 0 such that for every 2 CF(d;k;N;s) and
everyl=2> > O0there exists a NN ; with

L( 1) CNZlogy(k=) (5.1)
M( ) CN*2k)S < logy(k=) (5.2)
kKf R( 1)k, (5.3)

where the activation function is the ReLU.

Theorem 3.19 and Remark 3.20, we have that there exists a constan€ > 0and NNs ; such that

JRC D)) fi(x)j (5.4)

@
forall x 2 [ 2;21% andL( ;) CN log,(k=) and

diN k=s kN
s Nlog,(k=) C (2k) 5N log, (k= ):
The restriction kf kCS(Rd‘ ) 1 could be replaced by kf kCS(Rdi ) fora > 1, and Theorem 5.3 below would still hold up to

some additional constants depending on . This would, however, signi cantly increase the technicalities and obfuscate the main ideas
in Theorem 5.3.

M( ) € 4=(2K)
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Figure 5.1: Three types of graphs that could be the basis of compositional functions. The associated functions
are composed of two or three dimensional functions only.

Fori = d+1;::::N, let P; be the orthogonal projection from R' ! to the components in T;, i.e, for
Ti=:fji;iije 0 whereji < <j g, we setPi((Xk)i=i) = (Xj )iy
Nowwedenefor j=d+1;:::;N 1,

and
N .—
e = N Pn
Moreover,
f = eN eN 1 ed+l .
We rst analyse the size of ¢. Itis clear that

L(¢) N maxL €l N max L ( i) CNZlog,(k=);
J=d+1 ]=d+1

which yields (5.1). Additionally, since

M eN eN 1 ... edd oM eN eN 1 ... edN+d+l)=2e
+2M ed(N +d+1) =2e 1 eN+d+1=2
we have that
M ( ¢). 2900(Ney miax M € . N2 max M €l (5.5)
j=d+1 j=d+1
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Furthermore,

N i N 1 N
max M € maxM {4 ) + max M( )
j=d+l j=d+1 bbbt j=d+1

N
2NL( )+ max M ()
2CN?Zlog,(k=)+ C *¥S(2k)NKS N log, (k= );
where the penultimate estimate follows by Remark 3.10. Therefore, by (5.5),
M( ). @Y N logy(k=);

which implies (5.2).
Finally, we prove (5.3). We claim that for N >j >d in the notation of De nition 5.2, for x 2 [0; 1],

R e oo ed ) [v(x)va(x);iinv ()] =N T (5.6)

We prove (5.6) by induction. Since the realisation of 'dd;L( o) is the identity, we have, by construction that
(R(BH1)(x)) = vi(x) forall k  d. Moreover, by (5.4), we have that

R el (x) oy Vo (x) = R €™ (x) ™ faer (x) = (k)" :

Assume, for the induction step, that (5.6) holdsfor N 1>j>d .
Again, since the identity is implemented exactly, we have by the induction hypothesis that, forall k j,

R ei*l ... edl (y) ) w(x) =@V
Moreover, we have that v; .1 (X) = fj+1 (Pj+1 (va(X);:::;vi (X)])) . Hence,
R e+l ... eddl (y) i Vj+1 (X)
= R( js1) Pa R € i €1 () vy (x)
R( j+1) Pjsx R €& i 8% (x) fi,, Pa R & i €M (x)
+ fio1 P R & i €M1 ) fig P i)y ()] =i+
Per (5.4), we have thatl  =(2k)N (Notethat Pj,; R €; ::: €41 (x) [ 2,2]4+ py the induction
hypothesis). Moreover, since every partial derivative of fj.; is bounded in absolute value by 1we have that
I dj+ = (2KN I = 2(2k)N 1 1 py the induction assumption. Hence |+l =2k)N 11
Finally, we compute
R eN .o edl () vy(x)
= R(n) Pv R &1 i & (x) w(x)
R( n) Pv R €y 1 i €1l (x) fy Py R €y 1 ::: €41 (y)
+ fy Py R €y 1 :iro €% ) £y Py [Va()iiiiive 1(X)] =D IIHIV o

Using the exact same argument as for estimating | and Il above, we conclude that
"+ 1v ;
which yields (5.3). O
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Remark 5.4. Theorem 5.3 shows what we had already conjectured earlier. The complexity of approximating a composi-
tional function depends asymptotically not on the input dimengipbut on the maximum indegree of the underlying
graph.

We also see that, while the convergence rate does not depéniti®@iconstants irf5.2) are potentially very large.
In particular, for xed s the constants grow superexponentially wikh

5.3 Manifold assumptions

Realisations of deep NNs are, by de nition, always functions on a d dimensional euclidean space. Of course,
we may only care about the values that this function takes on subsets of this space. For example, we may
only study approximation by NNs on compact subsets of RY. In this manuscript, we have mostly studied this
setup for compact subsets of the form [A; B %, where A< B .

Another approach could be, that we only care about the approximation of functions that live on low
dimensional submanifolds M RY. In applications, such as image classi cation, it is conceivable that the
input data, only come from the (potentially) low dimensional submanifold of natural images. In that context,
it is clear that the approximation properties of NNs are only interesting to us on that submanifold. In other
words, we would not care about the behaviour of a NN on inputs that are just unstructured combinations of
pixel values.

For afunction f : M!  R"and > 0, we now search fora NN  with input dimension d and output
dimension n, such that

if(xX) RO( x) ; forallx2M:

If M is ad®dimensional manifold with d°<d,andf 2 C"(M ), then we would expect to be able to obtain
an approximation rate by NNs, that does not depend on d but on d°
To obtain such a result, we rst make a convenient de nition of certain types of submanifolds of ~ RY.

De nition 5.5. LetM be a smooth®dimensional submanifold &%. ForN 2 N; > 0, We say thatM is
(N; )-covered, if there exigt; :::xy M and such that

SN
i=1 B :Z(Xi) M
the projection
Pi: M\ B (xj)! T M
is injective and smooth and
P, L:Pi(M\ B (xi))!M

is smooth.

HereTy, M is the tangent space bdf atx;. See Figure 5.2 for a visualisation. We idenflfy M with R® in the
sequel.

Next, we need to de ne spaces of smooth functions on M . Fork 2 N, a function f on M is k-times
continuously di erentiable if f ' ! isk-times continuously di erentiable for every coordinate chart ' . If
M is (N; ) covered, then we can even introduce a convenient Ck- norm on the space of k-times continuously
di erentiable functionson M by

— 1 .
kf kck,n = sup f P, CKPIM B (x)) -

With this de nition, we can have the following result which is similar to a number of results in the
literature, such as [32, 33, 5, 30].
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Figure 5.2: One dimensional manifold embedded in 2D. For two points the tangent space is visualised in red.
The two circles describe areas where the projection onto the tangent space is invertible and smooth.

Theorem 5.6. Letd;k 2 N,M  RY be a(N; )-coveredi®-dimensional manifold foraN 2 Nand > 0. Then
there exists a constast> 0, such that, for every> 0, andf 2 CK(M ;R) with kf kg« N 1, there exists a NN ,
such that

ki R() ki
MO ¢ Flogy(l=)
L() ¢ (logy(1=)):
Here the activation function is the ReLU.

Proof. The proof is structured in two parts. First we show a convenient alternative representation of f, then
we construct the associated NN.

Step 1: SinceM is (N; )-covered, there existsB > OsuchthatM [ B;B]°.

Let T be a simplicial mesh on [ B;B ]9 so that for all nodes ; 2 T we have that

G(@i) B=s( i)

See (3.2) for the de nition of G(i) and Figure 5.3 for a visualisation of T.
By Proposition 3.1, we have that

We denote
Iy =fi=1;::;My:dist( ;M) =8g;
where dist(a;M ) = min yom ja yj. Per construction, we have that

X
1= iT(X); forall x2M :

i2lm
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Figure 5.3: Construction of mesh and choice of I, for a given manifold M

In Figure 5.3, we highlight the cells correspondingto |y . S
S Moreover, by De nition 5.5, there exist X;:::xy 2 M such that iNzl B-,(xi) M . Hence, j 2
iNzl Bs-g(xi)foralli 2 Iy . Thus, foreach ; thereexistsj (i) 2f 1;:::;NgsuchthatB -g( i) Bs=a(Xj))-
We rewrite f as follows: For x 2 M , we have that

X
f(x)= T (X) f(X)

P21
X 1
= pT(x) f Pj(i) Pj(i)(x)
120
X
= T(X) figy Py (5.7)
210

where f; : Pi{(M\ B (x;)) ! RhasCX norm bounded by 1. We have that

Pi(M\ Bs=4(xi)) Pi(M\ Bz=4(xi)) Pi(M\ B7=g(Xi))

and P;(M\ Bs-4(Xi)),Pi(M\ B;_g(xi)) are open. ByaC?! version of the Urysohn Lemma, there exists a
smooth function :RY! [0;1]suchthat =1 on P;(M\ Bj_4(x;)) and =0 on(P;(M\ B7-g(xi)))C.
We de ne

f, forx2Pi(M\ B (x))

fi = 0 else.

It is not hard to see that f7 2 CK(R%") with kf kek  Cy , where Cy is a constant depending on M only and
fi=fionPi(M\ Bj=4(Xi)). Hence, with (5.7), we have that

X
f(x)= iT(X) o Pip(x) (5.8)
i2lm

Step 2: The form of f given by (5.8) suggests a simple way to construct a ReLU approximation of f.
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