
Neural Network Theory
Philipp Christian Petersen

University of Vienna

March 2, 2020

Contents
1 Introduction 2

2 Classical approximation results by neural networks 3
2.1 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Approximation rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Basic operations of networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Reapproximation of dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Approximation of smooth functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Fast approximations with Kolmogorov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 ReLU networks 14
3.1 Linear finite elements and ReLU networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Approximation of the square function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Approximation of smooth functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 The role of depth 32
4.1 Representation of compactly supported functions . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Number of pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Approximation of non-linear functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 High dimensional approximation 35
5.1 Curse of dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Hierarchy assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Manifold assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Dimension dependent regularity assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Complexity of sets of networks 48
6.1 The growth function and the VC dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Lower bounds on approximation rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Spaces of realisations of neural networks 54
7.1 Network spaces are not convex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Network spaces are not closed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1



1 Introduction
In these notes, we study a mathematical structure called neural networks. These objects have recently received
much attention and have become a central concept in modern machine learning. Historically, however, they
were motivated by the functionality of the human brain. Indeed, the first neural network was devised by
McCulloch and Pitts [17] in an attempt to model a biological neuron.

A McCulloch and Pitts neuron is a function of the form

Rd 3 x 7! 1R+

 
dX
i=1

wixi � �

!
;

where d 2 N, 1R+ : R! R, with 1R+(x) = 0 for x < 0 and 1R+(x) = 1 else, and wi; � 2 R for i = 1; : : : d. The
function 1R+ is a so-called activation function, � is called a threshold, and wi are weights. The McCulloch and
Pitts neuron, receives d input signals. If their combined weighted strength exceeds �, then the neuron fires,
i.e., returns 1. Otherwise the neuron remains inactive.

A network of neurons can be constructed by linking multiple neurons together in the sense that the output
of one neuron forms an input to another. A simple model for such a network is the multilayer perceptron� as
introduced by Rosenblatt [26].

Definition 1.1. Let d; L 2 N, L � 2 and % : R! R. Then a multilayer perceptron (MLP) with d-dimensional
input, L layers, and activation function % is a function F that can be written as

x 7! F (x) := TL (% (TL�1 (: : : % (T1 (x)) : : : ))) ; (1.1)

where T‘(x) = A‘x + b‘, and (A‘)
L
‘=1 2 RN‘�N‘�1 , b‘ 2 RN‘ for N‘ 2 N, N0 = d, and ‘ = 1; : : : ; L. Here

% : R! R is applied coordinate-wise.

The neurons in the MLP correspond again, to the applications of % : R! R even though, in contrast to
the McCulloch and Pitts neuron, we now allow arbitrary %. In Figure 1.1, we visualise a MLP. We should
notice that the MLP does not allow arbitrary connections between neurons, but only between those, that are
in adjacent layers, and only from lower layers to higher layers.

N0 = 8 N1 = 12 N2 = 12 N3 = 12 N4 = 8 N5 = 1

Figure 1.1: Illustration of a multi-layer perceptron with 5 layers. The red dots correspond to the neurons.

While the MLP or variations thereof, are probably the most widely used type of neural network in practice,
they are very different from their biological motivation. Connections only between layers and arbitrary
�We will later introduce a notion of neural networks, that differs slightly from that of a multilayer perceptron.
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activation functions make for an e�cient numerical scheme but are not a good representation of the biological
reality.

Nowadays, the �eld of neural network theory draws most of its motivation from the fact that deep neural
networks are applied in a technique called deep learning[11]. In deep learning, one is concerned with the
algorithmic identi�cation of the most suitable deep neural network for a speci�c application. It is, therefore,
reasonable to search for purely mathematical arguments why and under which conditions a MLP is an
adequate architecture in practice instead of taking the motivation from the fact that biological neural networks
perform well.

In this note, will study deep neural networks with a very narrow focus. We will exclude all algorithmic
aspects of deep learning and concentrate fully on a functional analytical and well-founded framework.
One the one hand, following this focussed approach, it must be clear that we will not be able to provide a
comprehensive answer to why deep learning methods perform particularly. On the other hand, we will see
that this focus allows us to make rigorous statements which do provide explanations and intuition as to why
certain neural network architectures are preferable over others.

Concretely, we will identify many mathematical properties of sets of MLPs which explain, to some
extent, practically observed phenomena in machine learning. For example, we will see explanations of why
deep neural networks are, in some sense, superior to shallow neural networks or why the neural network
architecture can e�ciently reproduce high dimensional functions when most classical approximation schemes
cannot.

2 Classical approximation results by neural networks

The very �rst question that we would naturally ask ourselves is which functions we can express as a MLP.
Given that the activation function is �xed, it is conceivable that the set of functions that can be represented or
approximated could be quite small.

Example 2.1. � For linear activation functions%(x) = ax, a 2 R it is clear that every MLP with this activation
function is an a�ne linear map.

� More generally, if%is a polynomial of degreek 2 N, then every MLP withL layers is a polynomial of degree at
mostkL � 1.y

Example 2.1 demonstrates that under some assumptions on the activation function not every function
can be represented and not even approximated by MLPs with �xed depth.

2.1 Universality

One of the most famous results in neural network theory is that, under minor conditions on the activation
function, the set of networks is very expressive, meaning that every continuous function on a compact set can
be arbitrarily well approximated by a MLP. This theorem was �rst shown by Hornik [13] and Cybenko [7].

To talk about approximation, we �rst need to de�ne a topology on a space of functions of interest. We
de�ne, for K � Rd

C(K ) := f f : K ! R: f continuousg

and we equip C(K ) with the uniform norm

kf k1 := sup
x 2 K

jf (x)j:

If K is a compact space, then the representation theorem of Riesz [28, Theorem 6.19] tells us that the
topological dual space of C(K ) is the space

M := f � : � is a signed Borel measure onK g:

yA diligent student would probably want to verify this.
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Having �xed the topology on C(K ), we can de�ne the concept of universality next.

De�nition 2.2. Let %: R ! R be continuous,d; L 2 N andK � Rd be compact. Denote byMLP( %; d; L) the set of
all MLPs with d-dimensional input,L layers,NL = 1 , and activation function%.

We say thatMLP( %; d; L) is universal, ifMLP( %; d; L) is dense inC(K ).

Example 2.1 demonstrates thatMLP( %; d; L) is not universal for every activation function.

De�nition 2.3. Letd 2 N, K � Rd, compact. A continuous functionf : R ! R is calleddiscriminatory if the only
measure� 2 M such that Z

K
f (ax � b)d� (x) = 0 ; for all a 2 Rd; b 2 R

is � = 0 .

Theorem 2.4 (Universal approximation theorem [ 7]). Let d 2 N, K � Rd compact, and% : R ! R be
discriminatory. ThenMLP( %; d;2) is universal.

Proof. We start by observing that MLP( %; d;2) is a linear subspace ofC(K ). Assume towards a contradiction,
that MLP( %; d;2) is not dense in C(K ). Then there existsh 2 C(K ) n MLP( %; d;2).

By the theorem of Hahn-Banach [28, Theorem 5.19] there exists a functional

0 6= H 2 C(K )0

so that H = 0 on MLP( %; d;2). Since, fora 2 Rd; b 2 R,

x 7! %(ax � b) = : %a;b 2 MLP( %; d;2);

we have that H (%a;b ) = 0 for all a 2 Rd; b 2 R. Finally, by the identi�cation C(K )0 = M there exists a
non-zero measure � so that Z

K
%a;bd� = 0 ; for all a 2 Rd; b 2 R:

This is a contradiction to the assumption that %is discriminatory.

At this point, we know that all discriminatory activation functions lead to universal spaces of MLPs. Since
the property of being discriminatory seems hard to verify directly, we are now interested in identifying more
accessible su�cient conditions guaranteeing this property.

De�nition 2.5. A continuous functionf : R ! R such thatf (x) ! 1 for x ! 1 andf (x) ! 0 for x ! �1 is
calledsigmoidal .

Proposition 2.6. Letd 2 N, K � Rd be compact. Then every sigmoidal functionf : R ! R is discriminatory.

Proof. Let f be sigmoidal. Then it is clear from De�nition 2.5 that, for � ! 1 ,

f (� (ax � b) + � ) !

8
<

:

1 if ax � b > 0
f (� ) if ax � b = 0

0 if ax � b < 0:

As f is bounded and K compact, we conclude by the dominated convergence theorem that, for every
� 2 M , Z

K
f (� (a � � b) + � )d� !

Z

H a;b;>

1d� +
Z

H a;b; =

f (� )d�;

where
Ha;b;> := f x 2 K : ax � b > 0g and Ha;b;= := f x 2 K : ax � b = 0g:
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Figure 2.1: A sigmoidal function according to De�nition 2.5.

Now assume that Z

K
f (� (a � � b) + � )d� = 0

for all a 2 Rd; b 2 R. Then Z

H a;b;>

1d� +
Z

H a;b; =

f (� )d� = 0

and letting � ! �1 , we conclude that
R

H a;b;>
1d� = 0 for all a 2 Rd; b 2 R.

For �xed a 2 Rd and b1 < b2, we have that

0 =
Z

H a;b 1 ; +

1d� �
Z

H a;b 2 ; +

1d� =
Z

K
1[b1 ;b2 ](ax)d� (x):

By linearity, we conclude that

0 =
Z

K
g(ax)d� (x) (2.1)

for every step function g. By a density argument and the dominated convergence theorem, we have that (2.1)
holds for every bounded continuous function g. Thus (2.1)holds, in particular, for g = sin and g = cos. We
conclude that

0 =
Z

K
cos(ax) + i sin(ax)d� (x) =

Z

K
eiax d� (x):

This implies that the Fourier transform of the measure � vanishes. This can only happen if � = 0 , [27, p.
176].

Remark 2.7. Universality results can be achieved under signi�cantly weaker assumptions than sigmoidality. For
example, in [15] it is shown that Example 2.1 already contains all continuous activation functions that do not generate
universal sets of MLPs.

2.2 Approximation rates

We saw in Theorem 2.4 that MLPs form universal approximators. However, neither the result nor the proof
of it give any indication of how "large" MLPs need to be to achieve a certain approximation accuracy.
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Before we can even begin to analyse this question, we need to introduce a precise notion of the size of a
MLP. One option could certainly be to count the number of neurons, i.e.,

P L
` =1 N ` in (1.1)of De�nition 1.1.

However, since a MLP was de�ned as a function, it is by no means clear if there is a unique representation
with a unique number of neurons. Hence, the notion of "number of neurons" of a MLP requires some
clari�cation.

De�nition 2.8. Let d; L 2 N. A neural network (NN) with input dimension d and L layers is a sequence of
matrix-vector tuples

� =
�
(A1; b1); (A2; b2); : : : ; (AL ; bL )

�
;

whereN0 := d andN1; : : : ; NL 2 N, and whereA ` 2 RN ` � N ` � 1 andb̀ 2 RN ` for ` = 1 ; :::; L .
For a NN � and an activation function%: R ! R, we de�ne the associatedrealisation of the NN � as

R(�) : Rd ! RN L : x 7! xL := R(�)( x);

where the outputxL 2 RN L results from

x0 := x;

x ` := %(A ` x ` � 1 + b̀ ) for ` = 1 ; : : : ; L � 1;

xL := AL xL � 1 + bL :

(2.2)

Here%is understood to act component-wise.
We callN (�) := d +

P L
j =1 N j thenumber of neurons of the NN � , L (�) := L thenumber of layers or

depth, andM (�) :=
P L

j =1 M j (�) :=
P L

j =1 kA j k0 + kbj k0 thenumber of weights of � . Herek:k0 denotes the
number of non-zero entries of a matrix or vector.

According to the notion of De�nition 2.8, a MLP is the realisation of a NN.

2.3 Basic operations of networks

Before we analyse how many weights and neurons NNs need to possess so that their realisations approximate
certain functions well, we �rst establish a couple of elementary operations that one can perform with NNs.
This formalism was developed �rst in [23].

To understand the purpose of the following formalism, we start with the following question: Given two
realisations of NNs f 1 : Rd ! Rd and f 2 : Rd ! Rd, is it the case that the function

x 7! f 2(f 1(x))

is the realisation of a NN and how many weights, neurons, and layers does this new function need to have?
Given two functions f 1 : Rd ! Rd0

and f 2 : Rd0
! Rd00

, where d; d0; d002 N, we denote by f 1 � f 2 the
composition of these functions, i.e., f 1 � f 2(x) = f 1(f 2(x)) for x 2 Rd. Indeed, a similar concept is possible
for NNs.

De�nition 2.9. Let L 1; L 2 2 N and let� 1 = (( A1
1; b1

1); : : : ; (A1
L 1

; b1
L 1

)) ; � 2 = (( A2
1; b2

1); : : : ; (A2
L 2

; b2
L 2

)) be two
NNs such that the input layer of� 1 has the same dimension as the output layer of� 2. Then� 1  � 2 denotes the
followingL 1 + L 2 � 1 layer network:

� 1  � 2 :=
��

A2
1; b2

1

�
; : : : ;

�
A2

L 2 � 1; b2
L 2 � 1

�
;
�
A1

1A2
L 2

; A1
1b2

L 2
+ b1

1

�
;
�
A1

2; b1
2

�
; : : : ;

�
A1

L 1
; b1

L 1

��
:

We call� 1  � 2 theconcatenation of � 1 and � 2.

It is left as an exercise to show that

R
�
� 1  � 2�

= R
�
� 1�

� R
�
� 2�

:

A second important operation is that of parallelisation.
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Figure 2.2: Top: Two networks. Bottom: Concatenation of both networks according to De�nition 2.9.

De�nition 2.10. Let L; d1; d2 2 N and let� 1 = (( A1
1; b1

1); : : : ; (A1
L ; b1

L )) ; � 2 = (( A2
1; b2

1); : : : ; (A2
L ; b2

L )) be two
NNs with L layers and withd1-dimensional andd2-dimensional input, respectively. We de�ne

1. P
�
� 1; � 2

�
:=

��
bA1;bb1

�
;
�

~A2; ~b2

�
; : : : ;

�
~AL ; ~bL

��
, if d1 = d2,

2. FP
�
� 1; � 2

�
:=

��
~A1; ~b1

�
; : : : ;

�
~AL ; ~bL

��
, for arbitraryd1; d2 2 N,

where

bA1 :=
�

A1
1

A2
1

�
; bb1 :=

�
b1

1
b2

1

�
; and ~A ` :=

�
A1

` 0
0 A2

`

�
; ~b̀ :=

�
b1

`
b2

`

�
for 1 � ` � L:

P(� 1; � 2) is a NN with d-dimensional input andL layers, called theparallelisation with shared inputs of � 1 and
� 2. FP(� 1; � 2) is a NN with d1 + d2-dimensional input andL layers, called theparallelisation without shared
inputs of � 1 and � 2.

Figure 2.3: Top: Two networks. Bottom: Parallelisation with shared inputs of both networks according to
De�nition 2.10.

One readily veri�es that M (P(� 1; � 2)) = M (FP(� 1; � 2)) = M (� 1) + M (� 2), and

R%(P(� 1; � 2))( x) = (R %(� 1)(x); R%(� 2)(x)) ; for all x 2 Rd: (2.3)
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We depict the parallelisation of two networks in Figure 2.3. Using the concatenation, we can, for example,
increase the depth of networks without signi�cantly changing their output if we can build a network that
realises the identity function. We demonstrate how to approximate the identity function below. This is our
�rst quantitative approximation result.

Proposition 2.11. Let d 2 N, K � Rd compact, and%: R ! R be di�erentiable and not constant on an open set.
Then, for every� > 0, there exists a NN� = (( A1; b1); (A2; b2)) such thatA1; A2 2 Rd� d, b1; b2 2 Rd, M (�) � 4d,
and

jR(�)( x) � xj < �;

for all x 2 K .

Proof. Assume d = 1 , the general case ofd 2 N then follows immediately by parallelisation without shared
inputs.

Let x � 2 R be such that %is di�erentiable on a neighbourhood of x � and %0(x � ) = � 6= 0 . De�ne, for � > 0

b1 := x � ; A1 := 1=�; b 2 := � �%(x � )=�; A 2 := �=�:

Then we have, for all x 2 K ,

jR(�)( x) � xj =

�
�
�
� �

%(x=� + x � ) � %(x � )
�

� x

�
�
�
� : (2.4)

If x = 0 , then (2.4) shows that jR(�)( x) � xj = 0 . Otherwise

jR(�)( x) � xj =
jxj
j� j

�
�
�
�
%(x=� + x � ) � %(x � )

x=�
� �

�
�
�
� :

By the de�nition of the derivative, we have that jR(�)( x) � xj ! 0 for � ! 1 and all x 2 K .

Remark 2.12. It follows from Proposition 2.11 that under the assumptions of Theorem 2.4 and Proposition 2.11 we
have thatMLP( %; d; L) is universal for everyL 2 N, L � 2.

The operations above can be performed for quite general activation functions. If a special activation is
chosen, then di�erent operations are possible. In Section 3, we will, for example, introduce an exact emulation
of the identity function by realisations of networks with the so-called ReLU activation function.

2.4 Reapproximation of dictionaries

Approximation theory is a well-established �eld in applied mathematics. This �eld is concerned with
establishing the trade-o� between the size of certain sets and their capability of approximately representing a
function. Concretely, let H be a normed space and(AN )N 2 N be a nested sequence (i.e.AN � AN +1 for every
N 2 N) of subsets ofH and let C � H .

For N 2 N, we are interested in the following number

� (AN ; C) := sup
f 2C

inf
g2 A N

kf � gkH : (2.5)

Here, � (AN ; C) denotes the worst-case error when approximating every element of Cby the closest element
in AN . Quite often, it is not so simple to precisely compute � (AN ; C) but instead we can only establish an
asymptotic approximation rate. If h : N ! R+ is such that

� (AN ; C) = O(h(N )) ; for N ! 1 ; (2.6)

then we say that (AN )N 2 N achieves an approximation rate ofh for C.
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De�nition 2.13. A typical example of nested spaces of which we want to understand the approximation capabilities are
spaces of sparse representations in a basis or more generally in a dictionary. LetD := ( f i )1

i =1 � H be adictionary z.
We de�ne the spaces

AN :=

(
1X

i =1

ci f i : kck0 � N

)

: (2.7)

Herekck0 = # f i 2 N: ci 6= 0g.
With this notion ofAN , we call� (AN ; C) the bestN -term approximation error ofCwith respect toD . Moreover, if

h satis�es(2.6) then we say thatD achieves a rate of bestN -term approximation error of h for C.

We can introduce a simple procedure to lift approximation theoretical results for N -term approximation
to approximation theoretical results of NNs.

Theorem 2.14. Letd 2 N, H � f f : Rd ! Rg be a normed space,%: R ! R, andD := ( f i )1
i =1 � H be a dictionary.

Assume that there existL; C 2 N, such that, for everyi 2 N, and for every� > 0 there exists a NN� �
i such that

L (� �
i ) = L; M (� �

i ) � C; kR (� �
i ) � f i kH � �: (2.8)

For everyC � H , de�neAN as in(2.7)and

BN := f R(�) : � is a NN with d-dim input, L (�) = L; M (�) � N g:

Then, for everyC � H ,
� (BCN ; C) � � (AN ; C) :

Proof. We aim to show that there exists C > 0 such that every element in AN can be approximated by a NN
with CN weights to arbitrary precision.

Let a 2 AN , then a =
P N

j =1 ci ( j ) f i ( j ) . Let � > 0 then, by (2.8), we have that there exist NNs (� j )N
j =1 such

that

L (� j ) = L; M (� j ) � C;



 R (� j ) � f i ( j )






H
� �= (N kck1 ) : (2.9)

We de�ne, � c := (([ ci (1) ; ci (2) ; : : : ; ci (N ) ]; 0)) and � a;� := � c  P(� 1; � 2; � � � ; � N ). Now it is clear, by the
triangle inequality, that

kR (� a;� ) � ak =














NX

j =1

ci ( j )
�
f i ( j ) � R (� j )

�













�
NX

j =1

jci ( j ) j



 �

f i ( j ) � R (� j )
� 


 � �:

Per De�nition 2.9, L (� c  P(� 1; � 2; � � � ; � N )) = L(P(� 1; � 2; � � � ; � N )) = L and it is not hard to see that

M (� c  P (� 1; � 2; � � � ; � N )) � M (P (� 1; � 2; � � � ; � N )) � N max
j =1 ;:::;N

M (� j ) � NC:

Remark 2.15. In words, Theorem 2.14 states that we can transfer a classicalN -term approximation result to approxi-
mation by realisations of NNs if we can approximate every element from the underlying dictionary arbitrarily well by
NNs. It turns out that, under the right assumptions on the activation function, Condition(2.8) is quite often satis�ed.
We will see one instance of such a result in the following subsection and another one in Proposition 3.3 below.

zWe assume here and in the sequel that a dictionary contains only countably many elements. This assumption is not necessary, but
simpli�es the notation a bit.
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2.5 Approximation of smooth functions

We shall proceed by demonstrating that (2.9)holds for the dictionary of multivariate B -splines. This idea,
was probably �rst applied by Mhaskar in [18].

Towards our �rst concrete approximation result, we therefore start by reviewing some approximation
properties of B-splines: The univariate cardinal B-spline on [0; k] of order k 2 N is given by

Nk (x) :=
1

(k � 1)!

kX

` =0

(� 1)`
�

k
`

�
(x � `)k � 1

+ ; for x 2 R; (2.10)

where we adopt the convention that 00 = 0 .
For t 2 R and ` 2 N, we de�ne N `;t;k := Nk (2` (� � t)) . Additionally, we denote for d 2 N, ` 2 N, t 2 Rd the

multivariate B-splinesby

N d
`;t;k (x) :=

dY

i =1

N `;t i ;k (x i ); for x = ( x1; : : : xd) 2 Rd:

Finally, for d 2 N, we de�ne the dictionary of dyadic B-splines of orderk by

Bk :=
�

N d
`;t ` ;k : ` 2 N; t ` 2 2� ` Zd 	

: (2.11)

BestN -term approximation by multivariate B-splines is a well studied �eld. For example, we have the
following result by Oswald.

Theorem 2.16 ([21, Theorem 7]). Let d; k 2 N, p 2 (0; 1 ], 0 < s � k. Then there existsC > 0 such that, for every
f 2 Cs([0; 1]d), we have that, for every� > 0, and everyN 2 N there existsci 2 R with jci j � Ckf k1 andB i 2 B k

for i = 1 ; : : : ; N such that 









f �

NX

i =1

ci B i












L p

. N
� � s

d kf kC s :

In particular, forC := f f 2 Cs([0; 1]d) : kf kC s � 1g, we have thatBk achieves a rate of bestN -term approximation
error of orderN � � s for every� > 0. a

aIn [ 21, Theorem 7] this statement is formulated in much more generality. We cite here a simpli�ed version so that we do not have
to introduce Besov spaces.

To obtain an approximation result by NN via Theorem 2.14, we now only need to check under which
conditions every element of the B-spline dictionary can be represented arbitrarily well by a NN. In this regard,
we �rst �x a class of activation functions.

De�nition 2.17. A function %: R ! R is called sigmoidal of orderq 2 N, if %2 Cq� 1(R) and

%(x)
xq ! 0; for x ! �1 ;

%(x)
xq ! 1; for x ! 1 ; and

j%(x)j . (1 + jxj)q; for all x 2 R:

Standard examples of sigmoidal functions of order k 2 N are the functions x 7! maxf 0; xgq. We have the
following proposition.

Proposition 2.18. Letk; d 2 N, K > 0, and%: R ! R be sigmoidal of orderq � 2. There exists a constantC > 0
such that for everyf 2 B k and every� > 0 there is a NN� � with dlog2(d)e+ dmaxf logq(k � 1); 0ge+ 1 layers and
C weights, such that

kf � R%(� � )kL 1 ([ � K;K ]d ) � �:
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Proof. We demonstrate how to approximate a cardinal B-spline of order k, i.e., N d
0;0;k , by a NN � with

activation function %. The general case, i.e.,N d
`;t;k , follows by observing that shifting and rescaling of the

realisation of � can be done by manipulating the entries of A1 and b1 associated to the �rst layer of � . Towards
this goal, we �rst approximate a univariate B -spline. We observe with (2.10)that we �rst need to build
a network that approximates the function x 7! (x)k � 1

+ . The rest follows by taking sums and shifting the
function.

It is not hard to see (but probably a good exercise to formally show) that, for every K 0 > 0,
�
�
�
�
�
�
a� qT

%� %� � � � � %(ax)
| {z }

T � times

� xqT

+

�
�
�
�
�
�

! 0 for a ! 1 uniformly for all x 2 [� K 0; K 0]:

Choosing T := dmaxf logq(k � 1); 0gewe have that qT � k � 1. We conclude that, for every K 0 > 0 and � > 0
there exists a NN � �

� with dmaxf logq(k � 1); 0ge+ 1 layers such that
�
�R (� �

� ) (x) � xp
+

�
� � �; (2.12)

for every x 2 [� K 0; K 0], where p � k � 1. We observe that, for all x 2 [� K 0; K 0],

R
�
� �

� 2

�
(x + � ) � R

�
� �

� 2

�
(x)

�
! pxp� 1

+ for � ! 0: (2.13)

Repeating the 'derivative-trick' of (2.13), we can �nd, for every K 0 > 0 and � > 0 a NN � y
� such that, for all

x 2 [� K 0; K 0], �
�R(� y

� )(x) � xk � 1
+

�
� � �:

By (2.10), it is now clear that there exists a NN � _
� the size of which is independent of � which approximates

a univariate cardinal B-spline up to an error of � .
As a second step, we would like to construct a network which multiplies all entries of the d-dimensional

output of the realisation of the NN FP(� _
� ; : : : ; � _

� ). Since%is a sigmoidal function of order larger than 2,
we observe by the 'derivative trick' that led to (2.12)that we can also build a �xed size NN with two layers
which, for every K 0 > 0 and � > 0, approximates the map x 7! x2

+ arbitrarily well for x 2 [� K 0; K 0].
We have that for every x = ( x1; x2) 2 R2

2x1x2 = ( x1 + x2)2 � x2
1 � x2

2 = ( x1 + x2)2
+ + ( � x1 � x2)2

+ � (x1)2
+ � (� x1)2

+ � (x2)2
+ � (� x2)2

+ : (2.14)

Hence, we can conclude that, for every K 0 > 0, we can �nd a �xed size NN � mult
� with input dimension 2

which, for every � > 0, approximates the map (x1; x2) 7! x1x2 arbitrarily well for (x1; x2) 2 [� K 0; K 0]2.
We assume for simplicity, that log2(d) 2 N. Then we de�ne

� mult ;d;d= 2
� := FP(� mult ; : : : ; � mult

| {z }
d=2� times

):

It is clear that, for all x 2 [� K 0; K 0]d,
�
�
�R

�
� mult ;d;d= 2

�

�
(x1; : : : ; xd) � (x1x2; x3x4; : : : ; xd� 1xd)

�
�
� � �:

Now, we set

� mult ;d; 1
� := � mult

�
 � mult ;4;2

�
 : : :  � mult ;d;d= 2

� : (2.15)

We depict the hierarchical construction of (2.15)in Figure 2.4. Per construction, we have that � mult ;d; 1
� has

log2(d) + 1 layers and, for every � 0 > 0 and K 0 > 0, there exists � > 0 such that
�
� � mult ;d; 1

� (x1; : : : xd) � x1x2 � � � xd
�
� � � 0:

11



x1 x2 x3 x4 x5 x6 x5 x6

x1x2 x3x4 x5x6 x7x8

x1x2x3x4 x5x6x7x8

x1x2x3x4x5x6x7x8

Figure 2.4: Setup of the multiplication network (2.15). Every red dot symbolises a multiplication network
� mult

� and not a regular neuron.

Finally, we set
� � := � mult ;d; 1

�
 FP(� _

� ; : : : ; � _
�| {z }

d� times

):

Per de�nition of  , we have that � hasdmaxf logq(k � 1); 0ge+ log 2(d) + 1 many layers. Moreover, the size of
all components of � was independent of � . By choosing � su�ciently small it is clear by construction that � �

approximates N d
0;0;k arbitrarily well on [� K; K ]d for su�ciently small � .

As a simple consequence of Theorem 2.14 and Proposition 2.18 we obtain the following corollary.

Corollary 2.19. Let d 2 N, s > � > 0 andp 2 (0; 1 ]. Moreover let%: R ! R be sigmoidal of orderq � 2. Then
there exists a constantC > 0 such that, for everyf 2 Cs([0; 1]d) with kf kC s � 1 and every1=2 > � > 0, there exists
a NN � such that

kf � R(�) kL p � �

andM (�) � C� � d
s � � andL(�) = dlog2(d)e+ dmaxf logq(dse � 1); 0ge+ 1 .

Remark 2.20. Corollary 2.19 constitutes the �rst quantitative approximation result of these notes for a large class
of functions. There are a couple of particularly interesting features of this result. First of all, we observe that with
increasing smoothness of the functions, we need smaller networks to achieve a certain accuracy. On the other hand,
at least in the framework of this theorem, we require more layers if the smoothnesss is much higher than the order of
sigmoidality of%.

Finally, the order of approximation deteriorates very quickly with increasing dimensiond. Such a behaviour is often
calledcurse of dimension. We will later analyse to what extent NN approximation can overcome this curse.

2.6 Fast approximations with Kolmogorov

One observation that we made in the previous subsection is that some activation functions yield better
approximation rates than others. In particular, in Theorem 2.19, we see that if the activation function %has a
low order of sigmoidality, then we need to use much deeper networks to obtain the same approximation
rates than with a sigmoidal function of high order.

Naturally, we can ask ourselves if, by a smart choice of activation function, we could even improve
Corollary 2.19 further. The following proposition shows how to achieve an incredible improvement if d = 1 .
The idea for the following proposition and Theorem 2.24 below appeared in [ 16] �rst, but is presented in a
slightly simpli�ed version here.
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Proposition 2.21. There exists a continuous, piecewise polynomial activation function%: R ! R such that for every
function f 2 C([0; 1]) and every� > 0 there is a NN� f;� with M (�) � 3, andL(�) = 2 such that




 f � R

�
� f;� � 




1 � �: (2.16)

Proof. We denote by � Q, the set of univariate polynomials with rational coe�cients. It is well-known that
this set is countable and dense in C(K ) for every compact set K . Hence, we have that f � j [0;1] : � 2 � Qg is a
countable set and dense inC([0; 1]). We set(� i ) i 2 Z := f � j [0;1] : � 2 � Qg and de�ne

%(x) :=
�

� i (x � 2i ); if x 2 [2i; 2i + 1] ;
� i (1)(2i + 2 � x) + � i +1 (0)(x � 2i � 1); if x 2 (2i + 1 ; 2i + 2) :

It is clear that %is continuous and piecewise polynomial.
Finally, let us construct the network such that (2.19)holds. For f 2 C([0; 1]) and � > 0 we have by density

of (� i ) i 2 Z that there exists i 2 Z such that kf � � i k1 � � . Hence,

jf (x) � %(x + 2 i )j = jf (x) � � i (x)j � �: (2.17)

The claim follows by de�ning � f;� := ((1 ; 2i ); (1; 0)).

Remark 2.22. It is clear that the restriction to functions de�ned on[0; 1] is arbitrary. For every functionf 2
C([� K; K ]) for a constantK > 0, we have thatf (2K (� � 1=2)) 2 C([0; 1]). Therefore, the result of Proposition 2.21
holds by replacingC([0; 1]) by C([� K; K ]).

We will discuss to what extent the activation function %of Proposition 2.21 is sensible a bit further
below. Before that, we would like to generalise this result to higher dimensions. This can be done by using
Kolmogorov's superposition theorem.

Theorem 2.23 ([14]). For everyd 2 N, there are2d2 + d univariate, continuous, and increasing functions� p;q ,
p = 1 ; : : : ; d, q = 1 ; : : : ; 2d + 1 such that for everyf 2 C([0; 1]d) we have that, for allx 2 [0; 1]d,

f (x) =
2d+1X

q=1

gq

 
dX

p=1

� p;q (xp)

!

; (2.18)

wheregq, q = 1 ; : : : 2d + 1 , are univariate continuous functions depending onf .

We can combine Kolmogorov's superposition theorem and Proposition 2.21 to obtain the following
approximation theorem for realisations of networks with the special activation function from Proposition
2.21.

Theorem 2.24. Letd 2 N. Then there exists a constantC(d) > 0 and a continuous activation function%, such that
for every functionf 2 C([0; 1]d) and every� > 0 there is a NN� f;�;d with M (�) � C(d), andL(�) = 3 such that




 f � R

�
� f;�;d � 




1 � �: (2.19)

Proof. Let f 2 C([0; 1]d). Let � 0 > 0 and let e� 1;d := (([1 ; : : : ; 1]; 0)) be a network with d dimensional input
and e� 1;2d+1 := (([1 ; : : : ; 1]; 0)) be a network with 2d + 1 dimensional input. Let gq; � p;q for p = 1 ; : : : ; d,
q = 1 ; : : : ; 2d + 1 be as in (2.18).

We have that there exists C 2 R such that

ran (� p;q ) � [� C; C]; for all p = 1 ; : : : ; d; q = 1 ; : : : ; 2d + 1 :

We de�ne, with Proposition 2.21,

� q;� 0 := e� 1;d  FP
�
� � 1;q ;� 0 ; � � 2;q ;� 0 ; : : : ; � � d;q ;� 0

�
:
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It is clear that, for x = ( x1; : : : ; xd) 2 [0; 1]d,
�
�
�
�
�
R (� q;� 0 ) (x) �

dX

p=1

� p;q (xp)

�
�
�
�
�

� d� 0 (2.20)

and, by construction, M (� q) � 3d. Now de�ne, for � 1 > 0,

� f
� 0 ;� 1

:= e� 1;2d+1  FP (� g1 ;� 1 ; � g2 ;� 1 ; : : : � g2d +1 ;� 1 )  P
�
� 1;� 0 ; � 2;� 0 ; : : : ; � 2d+1 ;� 0 ; � 0

�
; (2.21)

where � g1 ;� 1 is according to Remark 2.22 with K = C + 1 .
Per de�nition of  it follows that L (� f

� 0
) � 3 and the size of � f

� 0
is independent of � 0 and � 1. We also have

that

R
�
� f

� 0 ;� 1

�
=

2d+1X

q=1

R (� gq ;� 1 ) � R (� q;� 0 ) :

We have by Proposition 2.21 that, for �xed � 1, the map R (� gq ;� 1 ) is uniformly continuous on [� C � 1; C + 1]
for all q = 1 ; : : : ; 2d + 1 and � 0 � 1.

Hence, we have that, for each~� > 0, there exists � ~� > 0 such that

jR (� gq ;� 1 ) (x) � R (� gq ;� 1 ) (y)j � ~�;

for all x; y 2 [� C � 1; C + 1] so that jx � yj � � ~� in particular this statement holds for ~� = � 1.
It follows from the triangle inequality, (2.20), and Proposition 2.21 that




 R

�
� f

� 0 ;� 1

�
� f






1
�

2d+1X

q=1











R (� gq ;� 1 ) (R (� q;� 0 )) � gq

 
dX

p=1

� p;q

! 










1

�
2d+1X

q=1











R (� gq ;� 1 ) (R (� q;� 0 )) � R (� gq ;� 1 )

 
dX

p=1

� p;q

! 










1

+











R (� gq ;� 1 )

 
dX

p=1

� p;q

!

� gq

 
dX

p=1

� p;q

! 










1

=:
2d+1X

p=1

I � 0 ;� 1 + II � 0 ;� 1 :

Choosing d� 0 < � � 1 , we have that I � 0 ;� 1 � � 1. Moreover, II � � 1 by construction .
Hence, for every 1=2 > � > 0, there exists � 0; � 1 such that




 R

�
� f

� 0

�
� f






1 � (2d + 1) � 1 � � . We de�ne
� f;�;d := � f

� 0 ;� 1
which concludes the proof.

Without knowing the details of the proof of Theorem 2.24 the statement that any function can be arbitrarily
well approximated by a �xed-size network is hardly believable. It seems as if the reason for this result to
hold is that we have put an immense amount of information into the activation function. At the very least,
we have now established that at least from a certain minimal size on, there is no aspect of the architecture of a
NN that fundamentally limits its approximation power. We will later develop fundamental lower bounds on
approximation capabilities. As a consequence of the theorem above, these lower bounds can only be given
for speci�c activation functions or under further restricting assumptions.

3 ReLU networks

We have already seen a variety of activation functions including sigmoidal and higher-order sigmoidal
functions. In practice, a much simpler function is usually used. This function is called recti�ed linear unit
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(ReLU). It is de�ned by

x 7! %R (x) := ( x)+ = max f 0; xg =
�

x for x � 0
0 else:

(3.1)

There are various reasons why this activation function is immensely popular. Most of these reasons are based
on its practicality in the algorithms used to train NNs which we do not want to analyse in this note. One
thing that we can observe, though, is that the evaluation of %R (x) can be done much more quickly than that
of virtually any non-constant function. Indeed, only a single decision has to be made, whereas, for other
activation functions such as, e.g., arctan, the evaluation requires many numerical operations. This function is
probably the simplest function that does not belong to the class described in Example 2.1.

One of the �rst questions that we can ask ourselves is whether the ReLU is discriminatory. We observe
the following. For a 2 R, b1 < b2 and every x 2 R, we have that

Ha(x) := %R (ax � ab1 + 1) � %R (ax � ab1) � %R (ax � ab2) + %R (ax � ab2 � 1) ! 1[b1 ;b2 ] for a ! 1 :

Indeed, for x < b 1 � 1=a, we have that Ha(x) = 0 . If b1 � 1=a < x < b 1, then Ha(x) = a(x � b1 + 1=a) � 1.
If b1 < x < b 2, then Ha(x) = %R (ax � ab1 + 1) � %R (ax � ab1) = 1 . If b2 � x < b 2 + 1=a, then Ha(x) =
1 � %R (ax � ab2) = 1 � ax � ab2 � 1. Finally, if x � b2 + 1=a then Ha(x) = 0 . We depict Ha in Figure 3.1.

b1b1 � 1
a b2 b2 + 1

a

Figure 3.1: Pointwise approximation of a univariate indicator function by sums of ReLU activation functions.

The argument above shows that sums of ReLUs can pointwise approximate arbitrary indicator function.
If we had that Z

K
%R (ax + b)d� (x) = 0 ;

for a � 2 M and all a 2 Rd and b 2 R, then this would imply
Z

K
1[b1 ;b2 ](ax)d� (x) = 0

for all a 2 Rd and b1 < b2. At this point we have the same result as in (2.1). Following the rest of the proof of
Proposition 2.6 yields that %R is discriminatory.

We saw in Proposition 2.18 how higher-order sigmoidal functions can reapproximate B -splines of arbitrary
order. The idea there was that, essentially, through powers of xq

+ , we can generate arbitrarily high degrees of
polynomials. This approach does not work anymore if q = 1 . Moreover, the crucial multiplication operation
of Equation (2.14)cannot be performed so easily with realisations of networks with the ReLU activation
function.

If we want to use the local approximation by polynomials in a similar way as in Corollary 2.19, we have
two options: being content with approximation by piecewise linear functions, i.e., polynomials of degree one,
or trying to reproduce higher-order monomials by realisations of NNs with the ReLU activation function in a
di�erent way than by simple composition.

Let us start with the �rst approach, which was established in [12].
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3.1 Linear �nite elements and ReLU networks

We start by recalling some basics on linear �nite elements. Below, we will perform a lot of basic operations
on sets and therefore it is reasonable to recall and �x some set-theoretical notation �rst. For a subset A of a
topological space, we denote by co(A) the convex hullof A, i.e., the smallest convex set containingA. By A we
denote the closure ofA, i.e., the smallest closed set containingA. Furthermore, int A denotes the interior of A,
which is the largest open subset of A. Finally, the boundary ofA is denoted by @Aand @A:= A n int A.

Let d 2 N, 
 � Rd. A set T � P (
) so that

[
T = 
 ;

T = ( � i )
M T
i =1 , where each� i is a d-simplexx, and such that � i \ � j � @�i \ @�j is an n-simplex with n < d for

every i 6= j is called a simplicial mesh of
 . We call the � i the cells of the meshT and the extremal points of the
� i , i = 1 : : : ; M T , the nodes of the mesh. We denote the set of nodes by(� i )

M N
i =1 .

Figure 3.2: A two dimensional simplicial mesh of [0; 1]2. The nodes are depicted by red x's.

We say that a meshT = ( � i )
M T
i =1 is locally convex, if for every � i it holds that

S
f � j : � i 2 � j g is convex.

For any mesh T one de�nes the linear �nite element space

VT :=
�

f 2 C(
) : f j � i a�ne linear for all i = 1 ; : : : ; M T
	

:

Since an a�ne linear function is uniquely de�ned through its values on d + 1 linearly independent points, it
is clear that every f 2 VT is uniquely de�ned through the values (f (� i ))

M N
i =1 . By the same token, for every

choice of (yi )
M N
i =1 , there exists a function f in VT such that f (� i ) = yi for all i = 1 ; : : : ; M N .

For i = 1 ; : : : ; M N we de�ne the Courant elements� i; T 2 VT to be those functions that satisfy � i; T (� j ) = � i;j .
See Figure 3.3 for an illustration.

Proposition 3.1. Letd 2 N andT be a simplicial mesh of
 � Rd, then we have that

f =
M NX

i =1

f (� i )� i; T

holds for everyf 2 VT .

xA d-simplex is a convex hull of d + 1 points v0 ; : : : ; vd such that (v1 � v0 ); (v2 � v0 ); : : : ; (vd � v0 ) are linearly independent.
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Figure 3.3: Visualisation of a Courant element on a mesh.

As a consequence of Proposition 3.1, we have that we can build every function f 2 VT as the realisation
of a NN with ReLU activation function if we can build � i; T for every i = 1 ; : : : ; M N .

We start by making a couple of convenient de�nitions and then �nd an alternative representation of � i; T .
We de�ne, for i; j = 1 ; : : : M N ,

F (i ) := f j 2 f 1; : : : ; M T g: � i 2 � j g; G(i ) :=
[

j 2 F ( i )

� j ; (3.2)

H (j; i ) := f � k 2 � j ; � k 6= � i g; I (i ) := f � k 2 G(i )g : (3.3)

Here F (i ) is the set of all indices of cells that contain � i . Moreover, G(i ) is the polyhedron created from
taking the union of all these cells.

Proposition 3.2. Letd 2 N andT be a locally convex simplicial mesh of
 � Rd. Then, for everyi = 1 ; : : : ; M N , we
have that

� i; T = max
�

0; min
j 2 F ( i )

gj

�
; (3.4)

wheregj is the unique a�ne linear function such thatgj (� k ) = 0 for all � k 2 H (j; i ) andgj (� i ) = 1 .

Proof. Let i 2 f 1; : : : ; M N g. By the local convexity assumption we have that G(i ) is convex. For simplicity, we
assume that � i 2 int G(i ).{

Step 1: We show that

@G(i ) =
[

j 2 F ( i )

co(H (j; i )) : (3.5)

The argument below is visualised in Figure 3.4. We have by convexity that G(i ) = co( I (i )) . Since� i lies in
the interior of G(i ) we have that there exists � > 0 such that B � (� i ) � G(i ). By convexity, we have that also the
open setco(int � k ; B � (� i )) is a subset ofG(i ). It is not hard to see that � k nco(H (k; i )) � co(int � k ; B � (� i )) and

{ The case� i 2 @G(i ) needs to be treated slightly di�erently and is left as an excercise.
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� i

x

Figure 3.4: Visualisation of the argument in Step 1. The simplex � k is coloured green. The grey ball around
� i is B � (� i ). The blue � representsx.

hence� k n co(H (k; i )) lies in the interior of G(i ). Since we also have that@G(i ) �
S

k2 F ( i ) @�k , we conclude
that

@G(i ) �
[

i 2 F ( i )

co(H (j; i )) :

Now assume that there is j such that co(H (j; i )) 6� @G(i ). Sinceco(H (j; i )) � G(i ) this would imply that
there exist x 2 co(H (j; i )) such that x is in the interior of G(i ). This implies that there exists � 0 > 0 such that
B 0

� (x) � G(i ). Hence, the line from � i to x can be extended for a distance of� 0=2 to a point x � 2 G(i ) n � j . As
x � must belong to a simplex � j � that also contains � i , we conclude that � j � intersects the interior of � j which
cannot be by assumption on the mesh.

Step 2:
For eachj , denote by H(j; i ) the hyperplane through H (j; i ). The hyperplane H(j; i ) splits Rd into two

subsets, and we denote byH int (j; i ) the set that contains � i .
We claim that

G(i ) =
\

j 2 F ( i )

H int (j; i ): (3.6)

This is intuitively clear and sketched in Figure 3.5.
We �rst prove the case G(i ) �

T
j 2 F ( i ) H int (j; i ). Assume towards a contradiction that x0 2 G(i ) is a point

in Rd n H int (j; i ) for a j 2 F (i )
Since� i does not lie in the boundary of G(i ) there exists � > 0 such that B � (� i ) � G(i ) and therefore,

by convexity co(B � (� i ); x0) � G(i ). Since� i and x0 are on di�erent sides of H(j; i ), we have that there is a
point x002 H (j; i ) and � 0 > 0, such that B � 0(x00) � G(i ). Therefore, co(B � 0(x00); int co(H (j; i ))) � G(i ) is open.
In particular, co(B � 0(x00); int co(H (j; i ))) \ @G(i ) = ? . We conclude that int co(H (j; i )) \ @G(i ) = ? . This
constitutes a contradiction to (3.5).

Next we prove that G(i ) �
T

j 2 F ( i ) H int (j; i ). Let x00062G(i ). Next, we show that x000lies in Rd n H int (j; i )
for at least one j . The line between x000and � i intersects G(i ) and, by Step 1, it intersectsco(H (j; i )) for a
j 2 F (i ). It is also clear that x000is not on the same side as� i . Hence x00062H int (j; i ).

Step 3: For each� j 2 I (i ), we have that gk (� j ) � 0 for all k 2 F (i ).
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G(i )

� i

H(j 1; i ) H (j 1; i )

Figure 3.5: The setG(i ) and two hyperplanes H(j 1; i ), H (j 2; i ). SinceG(i ) is convex and H(j; i ) extends its
boundary it is intuitively clear that G(i ) is only on one side of H(j; i ) and that (3.6) holds.

This is because, by(3.6)G(i ) lies fully on one side of each hyperplane H(j; i ), j 2 F (i ). Sincegk vanishes
on H(k; i ) and equals 1 on � i we conclude that gk (� j ) � 0 for all k 2 F (i )

Step 4: For every k 2 F (i ) we have that gk � gj on � k for all j 2 F (i )
If for j 2 F (i ), gj (� ` ) � gk (� ` ) for all � ` 2 � k , then, since� k = co( f � ` : � ` 2 � k g), we conclude that gj � gk .

Assume towards a contradiction that gj (� ` ) < g k (� ` ) for at least one � ` 2 I (i ). Clearly this assumption cannot
hold for � ` = � i since there gj (� i ) = 1 = gk (� i ). If � ` 6= � i , then gk (� ` ) = 0 implying gj (� ` ) < 0. Together
with Step 3 this yields a contradiction.

Step 5: For eachz 62G(i ), we have that there exists at least onek 2 F (i ) such that gk (z) � 0.
This follows as in Step 3. Indeed, if z 62G(i ) then, by (3.6)we have that there is a hyperplane H(k; i ) so

that z does not lie on the same side as� i . Hence gk (z) � 0.

Combining Steps 1-5 yields the claim (3.4).

Now that we have a formula for the functions � i; T , we proceed by building these functions as realisations
of NNs.

Proposition 3.3. Let d 2 N andT be a locally convex simplicial mesh of
 � Rd. Let kT denote the maximum
number of neighbouring cells of the mesh, i.e.,

kT := max
i =1 ;:::;M N

# f j : � i 2 � j g: (3.7)

Then, for everyi = 1 ; : : : ; M N , there exists a NN� i with

L(� i ) = dlog2(kT )e+ 2 ; andM (� i ) � C � (kT + d)kT (log2(kT ))

for a universal constantC > 0, and

R(� i ) = � i; T ; (3.8)

where the activation function is the ReLU.
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Proof. We now construct the network the realisation of which equals (3.4). The claim (3.8) then follows with
Proposition 3.2.

We start by observing that, for a; b2 R,

minf a; bg =
a + b

2
�

ja � bj
2

=
1
2

(%R (a + b) � %R (� a � b) � %R (a � b) � %R (b� a)) :

Thus, de�ning � min ;2 := (( A1; 0); (A2; 0)) with

A1 :=

2

6
6
4

1 1
� 1 � 1

1 � 1
� 1 1

3

7
7
5 ; A2 :=

1
2

[1; � 1; � 1; � 1];

yields R(�)( a; b) = min f a; bg, L (�) = 2 and M (�) = 12 . Following an idea that we saw earlier for the
construction of the multiplication network in (2.15), we construct for p 2 N even, the networks

e� min ;p := FP(� min ;2; : : : ; � min ;2

| {z }
p=2� times

)

and for p = 2 q

� min ;p = e� min ;2  e� min ;4 � � �  e� min ;p :

It is clear that the realisation of � min ;p is the minimum operator with p inputs. If p is not a power of two then
a small adaptation of the procedure above is necessary. We will omit this discussion here.

We see thatL (� min ;p ) = dlog2(p)e + 1 . To estimate the weights, we �rst observe that the number of
neurons in the �rst layer of e� min ;p is bounded by 2p. It follows that each layer of � min ;p has less than2p
neurons. Since all a�ne maps in this construction are linear, we have that

� min ;p = (( A1; b1); : : : ; (AL ; bL )) = (( A1; 0); : : : ; (AL ; 0)): (3.9)

We have that gk = Gk (�) + � k for � k 2 R and Gk 2 R1;d . Let

� a� := P
�
((G1; � 1)) ; ((G2; � 2)) ; : : : ;

��
G# F ( i ) ; � # F ( i )

���
:

Clearly, � a� has one layer,d dimensional input, and # F (i ) many output neurons.
We de�ne, for p := # F (i ),

� i; T := ((1 ; 0); (1; 0))  � min ;p  � a� :

Per construction and (3.4), we have that R(� i; T ) = � i; T . Moreover, L (� i; T )) = L(� min ;p ) + 1 = dlog2(p)e+ 2 .
Also, by construction, the number of neurons in each layer of � i; T is bounded by 2p. Since, by(3.9), we have
that

� i; T = (( A1; b1); (A2; 0); : : : ; (AL ; 0));

with A ` 2 RN ` � N ` � 1 and b1 2 Rp, we conclude that

M (� i; T ) � p +
LX

` =1

kA ` k0 � p +
LX

` =1

N ` � 1N ` � p + 2dp+ (2 p)2(dlog2(p)e):

Finally, per assumption p � kT which yields the claim.

As a consequence of Propositions 3.3 and 3.1, we conclude that one can represent every continuous
piecewise linear function on a locally compact mesh with N nodes as the realisation of a NN with CN
weights where the constant depends on the maximum number of cells neighbouring a vertex kT and the
input dimension d.
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Theorem 3.4. LetT be a locally convex partition of
 � Rd; d 2 N. LetT haveM N and letkT be de�ned as in(3.7).
Then, for everyf 2 VT , there exists a NN� f such that

L
�
� f �

� d log2(kT )e+ 2 ;

M (� f ) � CM N � (kT + d) kT log2 (kT ) ;

R
�
� f �

= f;

for a universal constantC > 0.

Remark 3.5. One way to read Theorem 3.4 is the following: Whatever one can approximate by piecewise a�ne linear,
continuous functions withN degrees of freedom can be approximated to the same accuracy by realisations of NNs with
C � N degrees of freedom, for a constantC. If we consider approximation rates, then this implies that realisations of
NNs achieve the same approximation rates as linear �nite element spaces.

For example, for
 := [0 ; 1]d, one has that there exists a sequence of locally convex simplicial meshes(Tn )1
n =1 with

M T (Tn ) . n such that
inf

g2 VT n

kf � gkL 2 (
) . n� 2
d kf kW 2; 2d= ( d +2) (
) ;

for all f 2 W 2;2d=(d+2) (
) , see, e.g., [12].

3.2 Approximation of the square function

With Theorem 3.4, we are able to reproduce approximation results of piecewise linear functions by realisations
of NNs. However, the approximation rates of piecewise a�ne linear functions when approximating Cs

regular functions do not improve for increasing s as soon ass � 1, see, e.g., Theorem 2.16. To really bene�t
from higher-order smoothness, one requires piecewise polynomials of higher degree.

Therefore, if we want to approximate smooth functions in the spirit of Corollary 2.19, then we need to be
able to e�ciently approximate continuous piecewise polynomials of degree higher than 1 by realisations of
NNs.

It is clear that this emulation of polynomials cannot be performed as in Corollary 2.19, since the ReLU is
piecewise linear. However, if we allow su�ciently deep networks there is, in fact, a surprisingly e�ective
possibility to approximate square functions and thereby polynomials by realisations of NNs with ReLU
activation functions.

To see this, we �rst consider the remarkable construction below.

E�cient construction of saw-tooth functions: Let

� ^ := (( A1; b1); (A2; 0));

where

A1 :=

0

@
2
2
2

1

A ; b1 :=

0

@
0

� 1
� 2

1

A ; A2 := [1 ; � 2; 1]:

Then
R (� ^ ) (x) = %R (2x) � 2%R (2x � 1) + %R (2x � 2)

and L(� ^ ) = 2 , M (� ^ ) = 8 , N0 = 1 ; N1 = 3 ; N3 = 1 . It is clear that R(� ^ ) is a hat function. We depict it in
Figure 3.6.

A quite interesting thing happens if we compose R(� ^ ) with itself. We have that

R(� ^  � � �  � ^
| {z }

n � times

) = R(� ^ ) � � � � � R(� ^ )
| {z }

n � times

)
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is a saw-tooth function with 2n � 1 hats of width 21� n each. This is depicted in Figure 3.6. Compositions are
notoriously hard to picture, hence it is helpful to establish the precise form of R(� ^  � � �  � ^

| {z }
n � times

) formally. We

analyse this in the following proposition.

Proposition 3.6. Forn 2 N, we have that

Fn = R(� ^  � � �  � ^
| {z }

n � times

)

satis�es, forx 2 (0; 1),

Fn (x) :=
�

2n (x � i2� n ) for x 2 [i2� n ; (i + 1)2 � n ]; i even;
2n (( i + 1)2 � n � x)) for x 2 [i2� n ; (i + 1)2 � n ]; i odd

(3.10)

andFn = 0 for x 62(0; 1). Moreover,L (� ^  � � �  � ^
| {z }

n � times

) = n + 1 andM (� ^  � � �  � ^
| {z }

n � times

) � 12n � 2.

Proof. The proof follows by induction. We have that, for x 2 [0; 1=2],

R(� ^ )(x) = %R (2x) = 2 x:

Moreover, for x 2 [1=2; 1] we conclude

R(� ^ )(x) = 2 x � 2(2x � 1) = 2 � 2x:

Finally, if x 62(0; 1), then
%R (2x) � 2%R (2x � 1) + %R (2x � 2) = 0 :

This completes the casen = 1 . We assume that we have shown (3.10) forn 2 N. Hence, we have that

Fn +1 = Fn � R(� ^ ); (3.11)

where Fn satis�es (3.10). Let x 2 [0; 1=2] and x 2 [i2� n � 1; (i + 1)2 � n � 1]; i even. Then R(� ^ )(x) = 2 x 2
[i2� n ; (i + 1)2 � n ]; i even. Hence, by (3.11), we have

Fn +1 (x) = 2 n (2x � i2� n ) = 2 n +1 (x � i2� n � 1):

If x 2 [1=2; 1] and x 2 [i2� n � 1; (i + 1)2 � n � 1]; i even, then R(� ^ )(x) = 2 � 2x 2 [2 � (i + 1)2 � n ; 2 � i2� n ] =
[(2n +1 � i � 1)2� n ; (2n +1 � i )2� n ] = [ j 2� n ; (j + 1)2 � n ] for j := (2 n +1 � i � 1) odd. We have, by (3.11),

Fn +1 (x) = 2 n (j 2� n � (2 � 2x)) = 2 n ((2 � 2� n (i + 1)) � (2 � 2x))

= 2 n (2x � 2� n (i + 1)) = 2 n +1 (x � 2� n � 1(i + 1)) :

The cases fori odd follow similarly. If x 62(0; 1), then R(� ^ )(x) = 0 and per (3.11)we have that Fn +1 (x) = 0 .
It is clear by De�nition 3.12 that L (� ^  � � �  � ^

| {z }
n � times

) = n + 1 . To show that M (� ^  � � �  � ^
| {z }

n � times

) � 12n � 2, we

observe with
� ^  � � �  � ^ =: ((A1; b1); : : : ; (AL ; bL )))

that M (� ^  � � �  � ^ ) �
P n +1

` =1 N ` � 1N ` + N ` � (n � 1)(32 + 3) + N0N1 + N1 + Nn Nn +1 + Nn +1 = 12(n �
1) + 3 + 3 + 3 + 1 = 12 n � 2, where we use that N ` = 3 for all 1 � ` � n and N0 = NL = 1 .
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Figure 3.6: Top Left: Visualisation of R(� ^ ) = F1. Bottom Right: Visualisation of R(� ^ ) � R(� ^ ) = F2,
Bottom Left: Fn for n = 4 .

Remark 3.7. Proposition 3.6 already shows something remarkable. Consider a two layer network� with input
dimension 1 andN neurons. Then its realisation with ReLU activation function is given by

R(�) =
NX

j =1

cj %R (ai x + bj ) � d;

for cj ; aj ; bj ; d 2 R. It is clear thatR(�) is piecewise a�ne linear with at mostM (�) pieces. We see, that with this
construction, the resulting networks have not more thanM (�) pieces. However, the functionFn from Proposition 3.6

has at least2
M (�)+2

12 linear pieces.
The functionFn is therefore a function that can be very e�ciently represented by deep networks, but not very

e�ciently by shallow networks. This was �rst observed in [35].

The surprisingly high number of linear pieces of Fn is not the only remarkable thing about the construction
of Proposition 3.6. Yarotsky [38] made the following insightful observation:

Proposition 3.8 ([38]). For everyx 2 [0; 1] andN 2 N, we have that

�
�
�
�
�
x2 � x +

NX

n =1

Fn (x)
22n

�
�
�
�
�

� 2� 2N � 2: (3.12)
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Proof. We claim that

HN := x �
NX

n =1

Fn

22n (3.13)

is a piecewise linear function with breakpoints k2� N where k = 0 ; : : : ; 2N , and HN (k2� N ) = k22� 2N . We
prove this by induction. The result clearly holds for N = 0 . Assume that the claim holds for N 2 N. Then we
see that

HN � HN +1 =
FN +1

22N +2 :

Since, by Proposition 3.6,FN +1 is piecewise linear with breakpoints k2� N � 1 where k = 0 ; : : : ; 2N +1 and HN

is piecewise linear with breakpoints `2� N � 1 where ` = 0 ; : : : ; 2N +1 even, we conclude that HN +1 is piecewise
linear with breakpoints k2� N � 1 where k = 0 ; : : : ; 2N +1 . Moreover, by Proposition 3.6, FN +1 vanishes for all
k2� N � 1, where k is even. Hence, by the induction hypothesis HN +1 (k2� N � 1) = ( k2� N � 1)2 for all k even.

To complete the proof, we need to show that

FN +1

22N +2 (k2� N � 1) = HN (k2� N � 1) � (k2� N � 1)2;

for all k odd. Since HN is linear on [(k � 1)2� N � 1); (k + 1)2 � N � 1)], we have that

HN (k2� N � 1) � (k2� N � 1)2 =
1
2

�
((k � 1)2� N � 1)2 + (( k + 1)2 � N � 1)2�

� (k2� N � 1)2 (3.14)

= 2 � 2N � 2
�

1
2

�
((k � 1))2 + ( k + 1) 2�

� k2
�

= 2 � 2(N +1) = 2 � 2(N +1) FN +1 (k2� N � 1);

where the last step follows by Proposition 3.6. This shows that HN +1 (k2� N � 1) = ( k2� N � 1)2 for all k =
0; : : : ; 2N +1 and completes the induction.

Finally, let x 2 [k2� N ; (k + 1)2 � N ], k = 0 ; : : : ; 2N � 1, then

jHN (x) � x2j = HN � x2 = ( k2� N )2 +

�
(k + 1) 2 � k2

�
2� 2N

2� N (x � k2� N ) � x2; (3.15)

where the �rst step is because x 7! x2 is convex and therefore its graph lies below that of the linear interpolant
and the second step follows by representing HN locally as the linear map that intersects x 7! x2 at k2� N and
(k + 1)2 � N .

Since(3.15)describes a continuous function on [k2� N ; (k + 1)2 � N ] vanishing at the boundary, it assumes
its maximum at the critical point

x � :=
1
2

�
(k + 1) 2 � k2

�
2� 2N

2� N =
1
2

(2k + 1)2 � N = (2 k + 1)2 � N � 1 = `2� N � 1;

for ` 2 f 1; : : : 2N +1 g odd. We have already computed in (3.14) that

jHN (x � ) � (x � )2j � 2� 2(N +1) :

This yields the claim.

Equation 3.12 and Proposition 3.6 make us optimistic that, with su�ciently deep networks, we can
approximate the square function very e�ciently. Before we can do this properly, we need to enlarge our
toolbox slightly and introduce a couple of additional operations on NNs.
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Figure 3.7: Visualisation of the construction of HN of (3.13).

ReLU speci�c network operations We saw in Proposition 2.11 that we can approximate the identity func-
tion by realisations of NNs for many activation functions. For the ReLU, we can even go one step further and
rebuild the identity function exactly.

Lemma 3.9. Letd 2 N, and de�ne
� Id := (( A1; b1) ; (A2; b2))

with

A1 :=
�

IdRd

� IdRd

�
; b1 := 0 ; A2 :=

�
IdRd � IdRd

�
; b2 := 0 :

ThenR(� Id ) = Id Rd .

Proof. Clearly, for x 2 Rd, R(� Id )(x) = %R (x) � %R (� x) = x:

Remark 3.10. Lemma 3.9 can be generalised to yield emulations of the identity function with arbitrary numbers of
layers. For eachd 2 N, and eachL 2 N� 2, we de�ne

� Id
d;L :=

0

@
��

IdRd

� IdRd

�
; 0

�
; (Id R2d ; 0); : : : ; (Id R2d ; 0)
| {z }

L � 2 times

; ([Id Rd j � IdRd ] ; 0)

1

A :

For L = 1 , one can achieve the same bounds, simply by setting� Id
d;1 := ((Id Rd ; 0)).

Our �rst application of the NN of Lemma 3.9 is for a rede�nition of the concatentation. Before that, we
�rst convince ourselves that the current notion of concatenation is not adequate if we want to control the
number of parameters of the concatenated NN.

Example 3.11. Let N 2 N and� = (( A1; 0); (A2; 0)) with A1 = [1 ; : : : ; 1]T 2 RN � 1, A2 = [1 ; : : : ; 1] 2 R1� N .
Per de�nition we have thatM (�) = 2 N .

Moreover, we have that
�  � = (( A1; 0); (A1A2; 0); (A2; 0)):

It holds thatA1A2 2 RN � N and every entry ofA1A2 equals1. HenceM (�  �) = N + N 2 + N .
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Example shows that the number of weights of networks behaves quite undesirably under concatenation.
Indeed, we would expect that it should be possible to construct a concatenation of networks that imple-
ments the composition of the respective realisations and the number of parameters scales linearly instead of
quadraticallyin the number of parameters of the individual networks.

Fortunately, Lemma 3.9 enables precisely such a construction, see also Figure 3.8 for an illustration.

De�nition 3.12. Let L 1; L 2 2 N, and let� 1 = (( A1
1; b1

1); : : : ; (A1
L 1

; b1
L 1

)) and� 2 = (( A2
1; b2

1); : : : ; (A2
L 2

; b2
L 2

)) be
two NNs such that the input layer of� 1 has the same dimensiond as the output layer of� 2. Let � Id be as in Lemma
3.9.

Then thesparse concatenation of� 1 and � 2 is de�ned as

� 1 � � 2 := � 1  � Id  � 2:

Remark 3.13. It is easy to see that

� 1 � � 2 =

 

(A2
1; b2

1); : : : ; (A2
L 2 � 1; b2

L 2 � 1);

 �
A2

L 2

� A2
L 2

�
;
�

b2
L 2

� b2
L 2

� !

;
��

A1
1

�
� � A1

1

�
; b1

1

�
; (A1

2; b1
2); : : : ; (A1

L 1
; b1

L 1
)

!

hasL 1 + L 2 layers and thatR(� 1 � � 2) = R(� 1) � R(� 2) andM (� 1 � � 2) � 2M (� 1) + 2 M (� 2).

Approximation of the square: We shall now build a NN that approximates the square function on [0; 1].
Of course this is based on the estimate (3.12).

Proposition 3.14 ([38, Proposition 2]). Let1=2 > � > 0. There exists a NN� sq;� such that, for� ! 0,

L (� sq;� ) = O(log2(1=�)) (3.16)

M (� sq;� ) = O(log2
2(1=�)) (3.17)

�
�R(� sq;� )(x) � x2

�
� � �; (3.18)

for all x 2 [0; 1]. In addition, we have thatR(� sq;� )(0) = 0 .

Proof. By (3.12), we have that, for N := d� log2(� )=2e, it holds that, for all x 2 [0; 1],
�
�
�
�
�
x2 � x +

NX

n =1

Fn (x)
22n

�
�
�
�
�

� �: (3.19)

We de�ne, for n = 1 ; : : : ; N ,

� n := � Id
1;N � n � (� ^  � � �  � ^

| {z }
n � times

): (3.20)

Then we have that L (� n ) = N � n + L(� ^  � � �  � ^
| {z }

n � times

) = N + 1 by Proposition 3.6. Moreover, by Remark 3.13,

M (� n ) � 2M (� Id
1;N � n ) + 2 M (� ^  � � �  � ^

| {z }
n � times

) � 4(N � n) + 2(12n � 2) � 24N; (3.21)

where the penultimate inequality follows from Remark 3.10 and Proposition 3.6.
Next, we set

� sq;� :=
��

1; � 1=4; : : : ; � 2� 2N �
; 0

�
� P

�
� Id

d;N +1 ; � 1; : : : ; � N
�

:

Per construction, we have that

R (� sq;� ) (x) = R
�
� Id

d;N +1

�
(x) �

NX

n =1

2� 2n R (� j ) (x) = x �
NX

n =1

Fn (x)
22n ;
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Figure 3.8: Top: Two neural networks, Middle: Sparse concatenation of the two networks as in De�nition
3.12,Bottom: Regular concatenation as in De�nition 2.9.

and, by (3.19), we conclude (3.18), for all x 2 [0; 1], and that R(�)(0) = 0 . Moreover, we have by Remark 3.13
that

L (� sq;� ) = L
���

1; � 1=4; : : : ; � 2� 2N �
; 0

��
+ L

�
P

�
� Id

d;N +1 ; � 1; : : : ; � N
��

= N + 2 = d� log2(� )=2e+ 2 :

This shows (3.16). Finally, by Remark 3.13

M (� sq;� ) � 2M
���

1; � 1=4; : : : ; � 2� 2N �
; 0

��
+ 2M

�
P

�
� Id

d;N +1 ; � 1; : : : ; � N
��

= 2( N + 1) + 2

 

M
�
� Id

d;N +1

�
+

NX

n =1

M (� n )

!

= 2( N + 1) + 4( N + 1) + 2
NX

n =1

M (� n )

� 6(N + 1) + 2
NX

n =1

24N = 6( N + 1) + 48 N 2;

where we applied (3.21) in the last estimate. Clearly,

6(N + 1) + 48 N 2 = O
�
N 2�

; for N ! 1 ;
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and hence
M (� sq;� ) = O

�
log2

2(1=�)
�

; for � ! 0;

which yields (3.17).

Remark 3.15. In [29, Theorem 5], a proof of the result above is given that does not require Proposition 3.8, but instead
is based on three fascinating ideas:

� Multiplication can be approximated by �nitely many semi-binary multiplications: For x 2 [0; 1], we
write x =

P 1
` =1 x ` 2` . Then

x � y =
1X

` =1

2� ` x ` y =
NX

` =1

2� ` x ` y + O(2� N ); for N ! 1 :

� Multiplication on [0; 1] by 0 or 1 can be build with a single ReLU: It holds that

%R (2� ` y + x ` � 1) =
�

2� ` y if x ` = 1
0 else

= 2 � ` x ` y:

� Extraction of binary representation is e�cient: We have, by Proposition 3.6, thatF` vanishes on alli2� ` for
i = 0 ; : : : ; 2` even and equals 1 on alli2� ` for i = 0 ; : : : ; 2` odd. Therefore

FN

 
NX

` =1

2� ` x `

!

= x ` :

By a short computation this yields that for allx 2 [0; 1] that FN (x � 2� N � 1) > 1=2; if xN = 1 andFN (x �
2� N � 1) � 1=2, if xN = 0 . Hence, by building an approximate Heaviside function1x � 0:5 with ReLU realisations
of networks, it is clear that one can approximate the mapx 7! x ` .

Building N of the binary multiplications therefore requiresN bit extractors andN multipliers by0=1. Hence, this
requires of the order ofN neurons, to achieve an error of2� N .

3.3 Approximation of smooth functions

With the emulation of the square function on [0; 1] we have, in principle, a way of emulating the higher-order
sigmoidal function x2

+ by ReLU networks. As we have seen in Section 2.5, sums and compositions of these
functions can be used to approximate smooth functions very e�ciently.

Approximation of multiplication: Based on the idea, that we have already seen in the proof of Propo-
sition 2.18, in particular, Equation (2.14), we show how an approximation of a square function yields an
approximation of a multiplication operator.

Proposition 3.16. Letp 2 N, K 2 N, � 2 (0; 1=2). There exists a NN� mult ;p;� such that for� ! 0

L (� mult ;p;� ) = O(log2(K ) � log2(1=�)) (3.22)

M (� mult ;p;� ) = O(log2(K ) � log2
2(1=�)) (3.23)

�
�
�
�
�
R(� mult ;p;� )(x) �

pY

` =1

x `

�
�
�
�
�

� �; (3.24)

for all x = ( x1; x2; : : : ; xp) 2 [� K; K ]p. Moreover,R(� mult ;p;� )(x) = 0 if x ` = 0 for at least onè � p. Here the
implicit constant depends onp only.
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Proof. The crucial observation is that, by the parallelogram identity, we have that for x; y 2 [� K; K ]

x � y =
K 2

4
�

 �
x + y

K

� 2

�
�

x � y
K

� 2
!

=
K 2

4

 �
%R (x + y)

K
+

%R (� x � y)
K

� 2

�
�

%R (x � y)
K

+
%R (� x + y)

K

� 2
!

:

We set

� 1 :=

0

B
B
@

0

B
B
@

0

B
B
@

1 1
� 1 � 1

1 � 1
� 1 1

1

C
C
A ; 0

1

C
C
A ;

�
1
K

�
�

1 1 0 0
0 0 1 1

�
; 0

�
1

C
C
A ; and � 2 :=

���
K 2

2
; �

K 2

2

�
; 0

��
:

Now we de�ne
� mult ;2;� := � 2 � FP

�
� sq;�=K 2

; � sq;�=K 2
�

� � 1:

It is clear that, for all x; y 2 [� K; K ],
�
�R

�
� mult ;2;� �

(x; y) � x � y
�
� � �:

Moreover, the size of � mult ;2;� is up to a constant that of � sq;�=K 2
. Thus (3.23)-(3.24)follow from Proposition

3.14. The construction for p > 2 follows by the now well-known stategy of building a binary tree of basic
multiplication networks as in Figure 2.4.

A direct corollary of Proposition 3.16 is the following Corollary that we state without proof.

Corollary 3.17. Letp 2 N, K 2 N, � 2 (0; 1=2). There exists a NN� pow ;p;� such that, for� ! 0,

L (� pow ;p;� ) = O(log2(K ) � log2(1=�))

M (� pow ;p;� ) = O(log2(K ) � log2
2(1=�))

jR(� pow ;p;� )(x) � xp j � �;

for all x 2 [� K; K ]. Moreover,R(� pow ;p;� )(x) = 0 if x = 0 . Here the implicit constant depends onp only.

Approximation of B-splines: Now that we can build a NN the realisation of which is a multiplication of
p 2 N scalars, it is not hard to see with (2.10) that we can rebuild cardinal B -splines by ReLU networks.

Proposition 3.18. Letd; k; ` 2 N, k � 2, t 2 Rd, 1=2 > � > 0. There exists a NN� d
`;t;k such that for� ! 0

L (d; k) := L(� d
`;t;k ) = O(log2(1=�)) ; (3.25)

M (d; k) := M (� d
`;t;k ) = O(log2

2(1=�)) ; (3.26)
�
�R(� d

`;t;k )(x) � N d
`;t;k (x)

�
� � �; (3.27)

for all x 2 Rd.

Proof. Clearly, it is su�cient to show the result for ` = 0 and t = 0 . We have by (2.10) that

Nk (x) =
1

(k � 1)!

kX

` =0

(� 1)`
�

k
`

�
(x � `)k � 1

+ ; for x 2 R; (3.28)
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It is well known, see [31], that supp Nk = [0 ; k] and kNk k1 � 1. Let � > 0, then we set

� k;� :=
��

1
(k � 1)!

��
k
0

�
; �

�
k
1

�
; : : : ; (� 1)k

�
k
k

��
; 0

��
� FP

0

@� pow ;k � 1;� ; : : : ; � pow ;k � 1;�

| {z }
k+1 � times

1

A

� ((A1; b1); (Id Rk +1 ; 0));

where
A1 = [1 ; 1; : : : ; 1]T ; b1 = � [0; 1; : : : ; k]T ;

and IdRk +1 is the identity matrix on Rk+1 . Here K := k + 1 in the de�nition of � pow ;k � 1;� via Corollary 3.17.
It is now clear, that we can �nd � � > 0 so that

jR(� k;� � )(x) � N k (x)j � �=(4d2d� 1); (3.29)

for x 2 [� k � 1; k + 1] . With su�cient care, we see that, we can choose � � = 
( � ), for � ! 0. Hence, we can
conclude from De�nition 3.12 that L � � := L (� k;� � ) = O(L(� mult ;k +1 ;� � )) = O(log2(1=�)) , and M (� k;� � ) =
O(� mult ;k +1 ;� � ) 2 O (log2

2(1=�)) , for � ! 0which yields (3.25)and (3.26). At this point, R(� k;� � ) only accurately
approximates Nk on [� k � 1; k + 1] . To make this approximation global, we multiply R(� k;� � ) with an
appropriate indicator function.

Let
� cut :=

��
[1; 1; 1; 1]T ; [1; 0; � k; � k � 1]T

�
; ([1; � 1; � 1; 1] ; 0)

�
:

Then R(� cut ) is a piecewise linear spline with breakpoints � 1; 0; k; k + 1 . Moreover, R(� cut ) is equal to 1 on
[0; k], vanishes on [� 1; k + 1] c, and is non-negative and bounded by 1. We de�ne

e� k;� := � mult ;2;�= (4d2d � 1 ) � P
�

� k;� � ; � Id
1;L � � � 2 � � cut

�
:

Since the realisation of the multiplication is 0 as soon as one of the inputs is zero by Proposition 3.16, we
conclude that

�
�
�R

�
e� k;� �

�
(x) � N k (x)

�
�
� � �=(2d2d� 1); (3.30)

for all x 2 R. Recall that

N d
0;0;k (x) :=

dY

j =1

Nk (x j ) ; for x = ( x1; : : : ; xd) 2 Rd:

Now we de�ne

� d
0;0;k;� := � mult ;d;�= 2 � FP( e� k;� � ; : : : ; e� k;� �| {z }

d� times

):

We have that

�
�N d

0;0;k (x) � R
�
� d

0;0;k;�

�
(x)

�
� �

�
�
�
�
�
�

dY

j =1

Nk (x j ) �
dY

j =1

R
�

e� k;� �

�
(x j )

�
�
�
�
�
�
+

�
�
�
�
�
�
R

�
� d

0;0;k;�

�
(x) �

dY

j =1

R
�

e� k;� �

�
(x j )

�
�
�
�
�
�
:

Additionally, we have by (3.30) that
�
�
�
�
�
�
�

dY

j =1

R
�

e� k;�

�
(x j ) � R

�
e� mult ;d;�= 2

�
� R(FP( e� k;� � ; : : : ; e� k;� �| {z }

d� times

))( x)

�
�
�
�
�
�
�

� �=2;
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for all x 2 Rd. It is clear, by repeated applications of the triangle inequality that for aj 2 [0; 1], bj 2 [� 1; 1],
for j = 1 ; : : : ; d,

�
�
�
�
�
�

dY

j =1

aj �
dY

j =1

(aj + bj )

�
�
�
�
�
�

� d �
�

1 + max
j =1 ;:::;d

jbj j
� d� 1

max
j =1 ;:::;d

jbj j � d2d� 1 max
j =1 ;:::;d

jbj j:

Hence, �
�
�
�
�
�

dY

j =1

Nk (x j ) �
dY

j =1

R
�

e� k;� �

�
(x j )

�
�
�
�
�
�

� �=2:

This yields (3.27). The statement on the size of� d
0;0;k;� follows from Remark 3.13.

Approximation of smooth functions: Having established how to approximate arbitrary B-splines with
Proposition 3.18, we obtain that we can also approximate all functions that can be written as weighted sums of
B-splines with bounded coe�cients. Indeed, we can conclude with Theorem 2.16 and with similar arguments
as in Theorem 2.14 the following result. Our overall argument to arrive here followed the strategy of [34].

Theorem 3.19. Let d 2 N, s > � > 0 andp 2 (0; 1 ]. Then there exists a constantC > 0 such that, for every
f 2 Cs([0; 1]d) with kf kC s � 1 and every1=2 > � > 0, there exists a NN� such that

L (�) � C log2(1=�); (3.31)

M (�) � C� � d
s � � ; (3.32)

kf � R(�) kL p � �: (3.33)

Here the activation function is the ReLU.

Proof. Let f 2 Cs([0; 1]d) with kf kC s � 1 and let s > � > 0. By Theorem 2.16 there exist a constantC > 0
and, for every N 2 N, ci 2 R with jci j � C and B i 2 B k for i = 1 ; : : : ; N and k := dse, such that











f �

NX

i =1

ci B i












p

� CN
� � s

d :

By Proposition 3.18, each of theB i can be approximated up to an error of N
� � s

d =(CN ) with a NN � i of
depth O(log2(N

� � s
d =(CN ))) = O(log2(N )) and number of weights O(log2

2(N
� � s

d =(CN ))) = O(log2
2(N )) for

N ! 1 .
We de�ne

� N
f := ([ c1; : : : ; cN ]; 0)  P (� 1; : : : ; � N ) :

It is not hard to see that, for N ! 1 ,

M (� N
f ) = O(N log2

2(N )) and L(� N
f ) = O(log2(N )) :

Additionally, by the triangle inequality




 f � R(� N

f )





p
� 2N

� � s
d :

To achieve (3.33), we, therefore, need to chooseN = N � := d(�=2)d=( � � s) e.
A simple estimate yields that L (� N �

f ) = O(log2(1=�)) for � ! 0, i.e, (3.31). Moreover, we have that

N � log2
2(N � ) � 4d=(s � � )( �=2)d=( � � s) log2

2(�=2) � C0� � d=(s� � ) log2
2(� );

31



for a constant C0 > 0. It holds that log2
2(� ) = O(� � � ) for every � > 0. Hence, for every � 0 > � with s > � 0, we

have
� � d=(s� � ) log2

2(� ) = O(� � d=(s� � 0) ); for � ! 0:

As a consequence we have thatM (� N �
f ) = O(� � d=(s� � 0) ) for � ! 0. Since� was arbitrary, this yields (3.32).

Remark 3.20. � It was shown in [38] that Theorem 3.19 holds with� = 0 but with the boundM (�) �
C� � d=s log2(1=�). Moreover, it holds forf 2 Cs([� K; K ]d) for K > 0, but the constantC will then de-
pend onK .

4 The role of depth

We have seen in the previous results that NNs can e�ciently emulate the approximation of classical approxi-
mation tools, such as linear �nite elements or B-splines. Already in Corollary 2.19, we have seen that deep
networks are sometimes more e�cient at this task than shallow networks. In Remark 3.7, we found that
ReLU-realisations of deep NNs can represent certain saw-tooth functions with N linear pieces using only
O(log2(N )) many weights, whereas shallow NNs require O(N ) many weights for N ! 1 .

In this section, we investigate further examples of representation or approximation tasks that can be
performed easily with deep networks but cannot be achieved by small shallow networks or any shallow
networks.

4.1 Representation of compactly supported functions

Below we show that compactly supported functions cannot be represented by weighted sums of functions of
the form x 7! %R (ha; xi ), but they can be represented by 3-layer networks. This result is based on [4, Section
3].

Proposition 4.1. Letd 2 N; d � 2. The following two statements hold for the activation function%R :

� If L � 3, then there exists a NN� with L layers, such thatsupp R(�) = Bk:k1 (0)k ,

� If L � 2, then, for every NN� with L layers, such thatsupp R(�) is compact, we have thatR(�) � 0.

Proof. It is clear that, for every x 2 Rd, we have that

dX

` =1

(%R (x ` ) + %R (� x ` )) = kxk1:

Moreover, the function %R (1 � k xk1) is clearly supported on Bk:k1 (0). Moreover, we have that %R (1 � k xk1)
can be written as the realisation of a NN with at least 3 layers.

Next we address the second part of the theorem. If L = 1 , then the set of realisations of NNs contains
only a�ne linear functions. It is clear that the only a�ne linear function that vanishes on a set of non-empty
interior is 0. For L = 2 , all realisations of NNs have the form

x 7!
NX

i =1

ci %R (hai ; xi + bi ) + d; (4.1)

for N 2 N, ci ; bi ; d 2 R and ai 2 Rd, for i = 1 ; : : : ; N . We assume without loss of generality that all
ai 6= 0 otherwise %R (hai ; xi + bi ) would be constant and one could remove the term from (4.1)by adapting d
accordingly.

k Here kxkp
p :=

P d
k =1 jxk jp for p 2 (0; 1 ).
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We next show that every function of the form (4.1)with compact support vanishes everywhere. For an
index i , we have that %R (hai ; xi + bi ) is not continously di�erentiable at the hyperplane given by

Si :=
�

�
bai

kai k2 + z: z ? ai

�
:

Let f be a function of the form (4.1). We de�ne i � j , if Si = Sj . Then we have that, for J 2 f 1; : : : ; N g= �
that a?

i = a?
j for all i; j 2 J . Hence,

X

j 2 J

cj %R (haj ; xi + bk );

is constant perpendicular to aj for every j 2 J . And since the sum is piecewise a�ne linear, we have that it is
either a�ne linear or not continuously di�erentiable at every element of Sj . We can write

f (x) =
X

J 2f 1;:::;N g=�

0

@
X

j 2 J

cj %R (haj ; xi + bj )

1

A + d:

If i 6� j , then Si and Sj intersect in hyperplanes of dimension d � 2. Hence, it is clear that, if for at least
one J 2 f 1; : : : ; N g= � ,

P
j 2 J cj %R (haj ; xi + bj ) is not linear, then f is not continuously di�erentiable almost

everywhere in Sj for j 2 J . SinceSj is unbounded, this contradicts the compact support assumption on f .
On the other hand, if, for all J 2 f 1; : : : ; N g= � , we have that

P
j 2 J cj %R (haj ; xi + bj ) is a�ne linear, then f

is a�ne linear. By previous observations we have that this necessitates f � 0 to allow compact support of
f .

Remark 4.2. Proposition 4.1, deals with representability only. However, a similar result is true in the framework of
approximation theory. Concretely, two layer networks are ine�cient at approximating certain compactly supported
functions, that three layer networks can approximate very well, see e.g. [9].

4.2 Number of pieces

We start by estimating the number of piecewise linear pieces of the realisations of NNs with input and output
dimension 1 and L layers. This argument can be found in [35, Lemma 2.1].

Theorem 4.3. Let L 2 N. Let%be piecewise a�ne linear withp pieces. Then, for every NN� with d = 1 ; NL = 1
andN1; : : : ; NL � 1 � N , we have thatR(�) has at most(pN)L � 1 a�ne linear pieces.

Proof. The proof is given via induction over L . For L = 2 , we have that

R(�) =
N 1X

k=1

ck %(hak ; xi + bi ) + d;

where ck ; ak ; bi ; d 2 R. It is not hard to see that if f 1; f 2 are piecewise a�ne linear with n1; n2 pieces each,
then f 1 + f 2 is piecewise a�ne linear with at most n1 + n2 pieces. Hence,R(�) has at most Np many a�ne
linear pieces.

Assume the statement to be proven for L 2 N. Let � L +1 be a NN with L + 1 layers. We set

� L +1 =: ((A1; b1) ; : : : ; (AL +1 ; bL +1 )) :

It is clear, that
R(� L +1 )(x) = AL +1 [%(h1(x)) ; : : : ; %(hN L (x))]T + bL +1 ;

where for ` = 1 ; : : : ; NL eachh` is the realisation of a NN with input and output dimension 1, L layers, and
less thanN neurons in each layer.
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For a piecewise a�ne linear function f with ~p pieces, we have that% f has at most p � ~p pieces. This is
because, for each of the~p a�ne linear pieces of f |let us call one of those pieces A � R|we have that f is
either constant or injective on A and hence% f has at most p linear pieces on A.

By this observation and the induction hypothesis, we conclude that % h1 has at most p(pN)L � 1 a�ne
linear pieces. Hence,

R(� L +1 )(x) =
N LX

k=1

(AL +1 )k %(hk (x)) + bL +1

has at most Np(pN)L � 1 = ( pN)L many a�ne linear pieces. This completes the proof.

For functions with input dimension more than 1 we have the following corollary.

Corollary 4.4. LetL; d 2 N. Let%be piecewise a�ne linear withp pieces. Then, for every NN� with NL = 1 and
N1; : : : ; NL � 1 � N , we have thatR(�) has at most(pN)L � 1 a�ne linear pieces along every line.

Proof. Every line in Rd can be parametrized by R 3 t 7! x0 + tv for x0; v 2 Rd. For � as in the statement of
corollary, we have that

R(�)( x0 + tv) = R(�  � 0)( t);

where � 0 = (( v; x0)) , which gives the result via Theorem 4.3.

4.3 Approximation of non-linear functions

Through the bounds on the number of pieces of a realisation of a NN with an piecewise a�ne linear activation
function, we can deduce a limit on approximability through NNs with bounds on the width and numbers of
layers for certain non-linear functions. This is based on the following observation, which can, e.g., be found
in [10].

Proposition 4.5. Let f 2 C2([a; b]), for a < b < 1 so thatf is not a�ne linear, then there exists a constant
c = c(f ) > 0 so that, for everyp 2 N,

kg � f k1 > cp � 2;

for all g which are piecewise a�ne linear with at mostp pieces.

From this argument, we can now conclude the following lower bound to approximating functions which
are not a�ne linear by realisations of NNs with �xed numbers of layers.

Theorem 4.6. Let d; L; N 2 N, andf 2 C2([0; 1]d), wheref is not a�ne linear. Let%: R ! R be piecewise a�ne
linear with p pieces. Then for every NN withL layers and fewer thanN neurons in each layer, we have that

kf � R(�) k1 � c(pN) � 2(L � 1) :

Proof. Let f 2 C2([0; 1]d) and non-linear. Then it is clear that there exists a point x0 and a vector v so that
t 7! f (x0 + tv) is non-linear in t = 0 .

We have that, for every NN � with d-dimensional input, one-dimensional output, L layers, and fewer
than N neurons in each layer that

kf � R(�) k1 � k f (x0 + �v) � R(�)( x0 + �v)k1 � c � (pN ) � 2(L � 1) ;

where the last estimate is by Corollary 4.4 and Proposition 4.5.

Remark 4.7. Theorem 4.6 shows that Theorem 3.19 would not hold with a �xed, bounded number of layersL as soon
ass su�ciently large. In other words, for very smooth functions, shallow networks yield suboptimal approximation
rates.

Moreover, no twice continuously di�erentiable and non-linear function can be approximated with an error that
decays with a super polynomial rate in the number of neurons by NNs with a �xed number of layers. In particular, the
approximation rate of Proposition 3.14 is not achievable by sequences of NNs of �xed �nite depth.
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5 High dimensional approximation

At this point we have seen two things on an abstract level. Deep NNs can approximate functions as well as
basically every classical approximation scheme. Shallow NNs do not perform as well as deep NNs in many
problems. From these observations we conclude that deep networks are preferable over shallow networks,
but we do not see why we should not use a classical tool, such as B-splines in applications instead. What is it
that makes deep NNs better than classical tools?

One of the advantages will become clear in this section. As it turns out, deep NNs are quite e�cient in
approximating high dimensional functions.

5.1 Curse of dimensionality

The curse of dimensionalityis a term introduced by Bellman [ 3] which is commonly used to describe an
exponentially increasing di�culty of problems with increasing dimension. A typical example is that of
function interpolation. We de�ne the following function class, for d 2 N,

Fd :=

(

f 2 C1 ([0; 1]d) : sup
j � j=1

kD � f k � 1

)

:

If one de�nes e(n; d) as the smallest number such that there exists an algorithm reconstructing every f 2 F d

up to an error of e(n; d) from n point evaluations of f , then

e(n; d) = 1

for all n � 2bd=2c � 1, see [20]. As a result, in any statement of the form

e(n; d) � Cd;r n� r ;

we have that the constant Cd;r depends exponentially on d.
Another instance of this principle can be observed when approximating non-smooth functions. For

example, in Theorem 2.16, we saw that the approximation rate, when approximating functions f 2 Cs([0; 1]d)
deteriorates exponentially with the dimension d. In fact, the approximation rates of Theorem 2.16 are, up to
the � , optimal under some very reasonable assumptions on the approximation scheme, see [8] and discussions
later in the manuscript. Hence, there is a fundamental lower bound on approximation capabilities of any
approximation scheme that increases exponentially with the dimension.

Careful inspection of the arguments above show that these arguments also apply to approximation by
deep NNs. Hence, whenever we say below, that NNs overcome the curse of dimensionalitythen we mean that
under a certain additional assumption on the functions to approximate, we will not see a terrible dependence
of the approximation rate on the dimension.

5.2 Hierarchy assumptions

We have seen in Corollary 2.19 and Theorem 3.19 that, to approximate aCs regular function by a NN with a
higher-order sigmoidal function or a ReLU as activation function up to an accuracy � > 0, we need essentially
O(� � d=s ) many weights. In contrast to that, a d-dimensional function f so that f (x) =

P d
i =1 gi (x i ), where

all the gi are one dimensional can be approximated using essentially dO(� � 1=s) many weights, which is
asymptotically much less than O(� � d=s ) for � ! 0.

It is, therefore, reasonable to assume that high dimensional functions that are build from lower dimensional
functions in a way that can be emulated well with NNs, can be much more e�ciently approximated than
high dimensional functions without this structure.

This observation was used in [ 25] to study approximation of so-called compositional functions. The
de�nition of these functions is based on special types of graphs.
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De�nition 5.1. Let d; k; N 2 N and letG(d; k; N ) be the set of directed acyclic graphs withN vertices, where the
indegree of every vertex is at mostk and the outdegree of all but one vertex is at least 1 and the indegree of exactlyd
vertices is0.

For G 2 G(d; k; N ), let (� i )N
i =1 be a topological ordering ofG. In other words, every edge� i � j in G satis�esi < j .

Moreover, for eachi > d we denote
Ti := f j : � j � i is an edge ofGg;

anddi = # Ti � k.

With the necessary graph theoretical framework established, we can now de�ne sets of hierarchical
functions.

De�nition 5.2. Let d; k; N; s 2 N. Let G 2 G(d; k; N ) and let, fori = d + 1 ; : : : ; N , f i 2 Cs(Rdi ) with
kf i kC s (Rd i ) � 1�� . For x 2 Rd, we de�ne fori = 1 ; : : : ; d vi = x i and vi (x) = f i (vj 1 (x); : : : ; vj d i

(x)) , where
j 1; : : : ; j di 2 Ti andj 1 < j 2 < � � � < j di .

We call the function

f : [0; 1]d ! R; x 7! vN (x)

acompositional function associated to G with regularity s. We denote the set of compositional functions associated
to any graph inG(d; k; N ) with regularity s by CF(d; k; N ; s).

We present a visualisation of three types of graphs in Figure 5.1. While we have argued before that it is
reasonable to expect that NNs can e�ciently approximate these types of functions, it is not entirely clear
why this is a relevant function class to study. In [ 19, 25], it is claimed that these functions are particularly
close to the functionality of the human visual cortex. In principle, the visual cortex works by �rst analysing
very localised features of a scene and then combining the resulting responses in more and more abstract
levels to yield more and more high-level descriptions of the scene.

If the inputs of a function correspond to spatial locations, e.g., come from several sensors, such as in
weather forecasting, then it might make sense to model this function as network of functions that �rst
aggregate information from spatially close inputs before sending the signal to a central processing unit.

Compositional functions can also be compared with Boolean circuits comprised of simple logic gates.
Let us now show how well functions from CF(d; k; N ; s) can be approximated by ReLU NNs. Here we

are looking for an approximation rate that increases with s and, hopefully, does not depend too badly on d.

Theorem 5.3. Let d; k; N; s 2 N. Then there exists a constantC > 0 such that for everyf 2 CF(d; k; N ; s) and
every1=2 > � > 0 there exists a NN� f with

L(� f ) � CN 2 log2(k=�) (5.1)

M (� f ) � CN 4(2k)
kN

s � � k
s log2(k=�) (5.2)

kf � R(� f )k1 � �; (5.3)

where the activation function is the ReLU.

Proof. Let f 2 CF(d; k; N ; s) and let, for i = d + 1 ; : : : ; N , f i 2 Cs(Rdi ) be according to De�nition 5.2. By
Theorem 3.19 and Remark 3.20, we have that there exists a constantC > 0 and NNs � i such that

jR(� i )(x) � f i (x)j �
�

(2k)N ; (5.4)

for all x 2 [� 2; 2]di and L(� i ) � CN log2(k=�) and

M (� i ) � C� � di =s(2k)
d i N

s N log2(k=�) � C� � k=s (2k)
kN

s N log2(k=�):
�� The restriction kf i kC s ( Rd i ) � 1 could be replaced by kf i kC s ( Rd i ) � � for a � > 1, and Theorem 5.3 below would still hold up to

some additional constants depending on � . This would, however, signi�cantly increase the technicalities and obfuscate the main ideas
in Theorem 5.3.
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Figure 5.1: Three types of graphs that could be the basis of compositional functions. The associated functions
are composed of two or three dimensional functions only.

For i = d + 1 ; : : : ; N , let Pi be the orthogonal projection from Ri � 1 to the components in Ti , i.e, for
Ti =: f j 1; : : : ; j di g, where j 1 < � � � < j di , we set Pi ((xk ) i � 1

k=1 ) = ( x j k )di
k=1 .

Now we de�ne for j = d + 1 ; : : : ; N � 1,

e� j := P
�

� Id
j � 1;L (� j ) ; � j  Pj

�
;

and
e� N := � N  PN :

Moreover,
� f := e� N � e� N � 1 � : : : � e� d+1 :

We �rst analyse the size of � f . It is clear that

L (� f ) � N
N

max
j = d+1

L
�

e� j
�

� N
N

max
j = d+1

L (� j ) � CN 2 log2(k=�);

which yields (5.1). Additionally, since

M
�

e� N � e� N � 1 � : : : � e� d+1
�

� 2M
�

e� N � e� N � 1 � : : : � e� d(N + d+1) =2e
�

+ 2M
�

e� d(N + d+1) =2e� 1 � : : : � e� N + d+1 =2
�

;

we have that

M (� f ) . 2dlog 2 (N )eN
N

max
j = d+1

M
�

e� j
�

. N 2 N
max

j = d+1
M

�
e� j

�
: (5.5)
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Furthermore,

N
max

j = d+1
M

�
e� j

�
�

N � 1
max

j = d+1
M

�
� Id

j � 1;L (� j )

�
+

N
max

j = d+1
M (� j )

� 2NL (� j ) +
N

max
j = d+1

M (� j )

� 2CN 2 log2(k=�) + C� � k=s (2k)Nk=s N log2(k=�);

where the penultimate estimate follows by Remark 3.10. Therefore, by (5.5),

M (� f ) . � � k=s (2k)Nk=s N 4 log2(k=�);

which implies (5.2).
Finally, we prove (5.3). We claim that for N > j > d in the notation of De�nition 5.2, for x 2 [0; 1]d,

�
�
�R

�
e� j � : : : � e� d+1

�
(x) � [v1(x); v2(x); : : : ; vj (x)]

�
�
� � �= (2k)N � j : (5.6)

We prove (5.6)by induction. Since the realisation of � Id
d;L (� d +1 ) is the identity, we have, by construction that

(R( e� d+1 )(x)) k = vk (x) for all k � d. Moreover, by (5.4), we have that
�
�
�
�

�
R

�
e� d+1

�
(x)

�

d+1
� vd+1 (x)

�
�
�
� =

�
�
�
�

�
R

�
e� d+1

�
(x)

�

d+1
� f d+1 (x)

�
�
�
� � �= (2k)N :

Assume, for the induction step, that (5.6) holds for N � 1 > j > d .
Again, since the identity is implemented exactly, we have by the induction hypothesis that, for all k � j ,

�
�
�
�

R
�

e� j +1 � : : : � e� d+1
�

(x)
�

k
� vk (x)

�
�
� � �= (2k)N � j :

Moreover, we have that vj +1 (x) = f j +1 (Pj +1 (v1(x); : : : ; vj (x)])) . Hence,
�
�
�
�

�
R

�
e� j +1 � : : : � e� d+1

�
(x)

�

j +1
� vj +1 (x)

�
�
�
�

=
�
�
�R (� j +1 ) � Pj +1 � R

�
e� j � : : : � e� d+1

�
(x) � vj +1 (x)

�
�
�

�
�
�
�R (� j +1 ) � Pj +1 � R

�
e� j � : : : � e� d+1

�
(x) � f j +1 � Pj +1 � R

�
e� j � : : : � e� d+1

�
(x)

�
�
�

+
�
�
� f j +1 � Pj +1 � R

�
e� j � : : : � e� d+1

�
(x) � f j +1 � Pj +1 � [v1(x); : : : ; vj (x)]

�
�
� = : I + II :

Per (5.4), we have thatI � �=(2k)N (Note that Pj +1 � R
�

e� j � : : : � e� d+1
�

(x) � [� 2; 2]dj +1 by the induction

hypothesis). Moreover, since every partial derivative of f j +1 is bounded in absolute value by 1 we have that
II � dj +1 �=

�
(2k)N � j

�
� �=

�
2(2k)N � j � 1

�
by the induction assumption. Hence I + II � �=(2k)N � j � 1

Finally, we compute
�
�
�R

�
e� N � : : : � e� d+1

�
(x) � vN (x)

�
�
�

=
�
�
�R (� N ) � PN � R

�
e� N � 1 � : : : � e� d+1

�
(x) � vN (x)

�
�
�

�
�
�
�R (� N ) � PN � R

�
e� N � 1 � : : : � e� d+1

�
(x) � f N � PN � R

�
e� N � 1 � : : : � e� d+1

�
(x)

�
�
�

+
�
�
� f N � PN � R

�
e� N � 1 � : : : � e� d+1

�
(x) � f N � PN � [v1(x); : : : ; vN � 1(x)]

�
�
� = : III + IV :

Using the exact same argument as for estimating I and II above, we conclude that

III + IV � �;

which yields (5.3).
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Remark 5.4. Theorem 5.3 shows what we had already conjectured earlier. The complexity of approximating a composi-
tional function depends asymptotically not on the input dimensiond, but on the maximum indegree of the underlying
graph.

We also see that, while the convergence rate does not depend ond, the constants in(5.2)are potentially very large.
In particular, for �xed s the constants grow superexponentially withk.

5.3 Manifold assumptions

Realisations of deep NNs are, by de�nition, always functions on a d dimensional euclidean space. Of course,
we may only care about the values that this function takes on subsets of this space. For example, we may
only study approximation by NNs on compact subsets of Rd. In this manuscript, we have mostly studied this
setup for compact subsets of the form [A; B ]d, where A < B .

Another approach could be, that we only care about the approximation of functions that live on low
dimensional submanifolds M � Rd. In applications, such as image classi�cation, it is conceivable that the
input data, only come from the (potentially) low dimensional submanifold of natural images. In that context,
it is clear that the approximation properties of NNs are only interesting to us on that submanifold. In other
words, we would not care about the behaviour of a NN on inputs that are just unstructured combinations of
pixel values.

For a function f : M ! Rn and � > 0, we now search for a NN � with input dimension d and output
dimension n, such that

jf (x) � R(�)( x)j � �; for all x 2 M :

If M is a d0-dimensional manifold with d0 < d , and f 2 Cn (M ), then we would expect to be able to obtain
an approximation rate by NNs, that does not depend on d but on d0.

To obtain such a result, we �rst make a convenient de�nition of certain types of submanifolds of Rd.

De�nition 5.5. Let M be a smoothd0-dimensional submanifold ofRd. For N 2 N; � > 0, We say thatM is
(N; � )-covered, if there existx1 : : : xN � M and such that

�
S N

i =1 B �= 2(x i ) � M

� the projection
Pi : M \ B � (x i ) ! Tx i M

is injective and smooth and
P � 1

i : Pi (M \ B � (x i )) ! M

is smooth.

HereTx i M is the tangent space ofM at x i . See Figure 5.2 for a visualisation. We identifyTx i M with Rd0
in the

sequel.

Next, we need to de�ne spaces of smooth functions on M . For k 2 N, a function f on M is k-times
continuously di�erentiable if f � ' � 1 is k-times continuously di�erentiable for every coordinate chart ' . If
M is (N; � ) covered, then we can even introduce a convenient Ck - norm on the space of k-times continuously
di�erentiable functions on M by

kf kC k ;�;N := sup
i =1 ;:::;N




 f � P � 1

i






C k (P i (M\ B � (x i ))) :

With this de�nition, we can have the following result which is similar to a number of results in the
literature, such as [32, 33, 5, 30].
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M

Figure 5.2: One dimensional manifold embedded in 2D. For two points the tangent space is visualised in red.
The two circles describe areas where the projection onto the tangent space is invertible and smooth.

Theorem 5.6. Let d; k 2 N, M � Rd be a(N; � )-coveredd0-dimensional manifold for anN 2 N and� > 0. Then
there exists a constantc > 0, such that, for every� > 0, andf 2 Ck (M ; R) with kf kC k ;�;N � 1, there exists a NN� ,
such that

kf � R(�) k1 � �;

M (�) � c �
�

� � d 0
k log2(1=�)

�

L (�) � c � (log2(1=�)) :

Here the activation function is the ReLU.

Proof. The proof is structured in two parts. First we show a convenient alternative representation of f , then
we construct the associated NN.

Step 1: SinceM is (N; � )-covered, there existsB > 0 such that M � [� B; B ]d.
Let T be a simplicial mesh on [� B; B ]d so that for all nodes � i 2 T we have that

G(i ) � B �= 8(� i ):

See (3.2) for the de�nition of G(i ) and Figure 5.3 for a visualisation of T .
By Proposition 3.1, we have that

1 =
M NX

i =1

� i; T :

We denote
I M := f i = 1 ; : : : ; M N : dist( � i ; M ) � �=8g;

where dist (a; M ) = min y2M ja � yj. Per construction, we have that

1 =
X

i 2 I M

� i; T (x); for all x 2 M :
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M

Figure 5.3: Construction of mesh and choice of I M for a given manifold M

In Figure 5.3, we highlight the cells corresponding to I M .
Moreover, by De�nition 5.5, there exist x1 : : : xN 2 M such that

S N
i =1 B �= 2(x i ) � M . Hence, � i 2

S N
i =1 B5�= 8(x i ) for all i 2 I M . Thus, for each� i there existsj (i ) 2 f 1; : : : ; N g such that B �= 8(� i ) � B3�= 4(x j ( i ) ).

We rewrite f as follows: For x 2 M , we have that

f (x) =
X

i 2 I M

� i; T (x) � f (x)

=
X

i 2 I M

� i; T (x) �
�

f � P � 1
j ( i ) � Pj ( i ) (x)

�

= :
X

i 2 I M

� i; T (x) �
�
f j ( i ) � Pj ( i ) (x)

�
; (5.7)

where f i : Pi (M \ B � (x i )) ! R has Ck norm bounded by 1. We have that

Pi (M \ B3�= 4(x i )) � Pi (M \ B3�= 4(x i )) � Pi (M \ B7�= 8(x i ))

and Pi (M \ B3�= 4(x i )) , Pi (M \ B7�= 8(x i )) are open. By aC1 version of the Urysohn Lemma, there exists a
smooth function � : Rd ! [0; 1] such that � = 1 on Pi (M \ B3�= 4(x i )) and � = 0 on (Pi (M \ B7�= 8(x i ))) c.

We de�ne
~f i :=

�
�f i for x 2 Pi (M \ B � (x i ))
0 else.

It is not hard to see that ~f i 2 Ck (Rd0
) with kf kC k � CM , where CM is a constant depending on M only and

~f i = f i on Pi (M \ B3�= 4(x i )) . Hence, with (5.7), we have that

f (x) =
X

i 2 I M

� i; T (x) �
�

~f j ( i ) � Pj ( i ) (x)
�

: (5.8)

Step 2: The form of f given by (5.8) suggests a simple way to construct a ReLU approximation of f .
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