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Chapter 1

What is applied harmonic analysis?

Applied harmonic analysis a research area studying the efficient decomposition or representation, storage,
and analysis of signals. In this framework, a signal will always be an element of a separable Hilbert space,
and most of the time this will be L2(Rd), d ∈ N, and sometimes it will be `2.

We will start by presenting a prototype question in applied harmonic analysis. This part of the motivation
is by no means a precise definition of what applied harmonic analysis is, but should rather give the participant
of this workshop a feeling of the type of questions that an applied harmonic analyst is interested in. As a
result, the presented question will be much less general than what we will study in the sequel and vague in
parts where we lack the right terminology. We will sharpen and refine this setup more and more, once we
have the right tools to do so.

Let H be a Hilbert space, (ϕn)n∈N ⊂ H. Further assume, that for every f ∈ H, there exist a unique
sequence (cn(f))n∈N ⊂ `2 such that

f =
∑
n∈N

cn(f)ϕn. (1.0.1)

This is certainly possible if (ϕn)n∈N ⊂ H is an orthogonal basis, but also for much more general systems
(ϕn)n∈N ⊂ H. One of the main problems in applied harmonic analysis is to design the right bases (ϕn)n∈N
(or generalisations thereof) such that the representation of (1.0.1) satisfies the following criteria:

1. Efficiency/Sparsity: The representation (1.0.1) should be efficient in the sense that if one computes
only partial sums over a carefully chosen subset Λ ⊂ N where |Λ| is fairly small, then

f ≈
∑
n∈Λ

cn(f)ϕn.

Such an efficient representation is unlikely to exist for all f ∈ H. Instead, we want such an efficient
representation only for f in a subset of H containing functions of interest.

2. Interpretability/Manipulation: The representations should also serve as an analysis tool in the sense
that (cn(f))n∈N unveils certain properties of f that were not directly accessible beforehand. Another
desirable property would be that by manipulating (cn(f))n∈N one can change certain aspects of f while
leaving other characteristics of f unchanged.

3. Computationally fast: Since applied harmonic analysis is an applied field we are of course also interested
in representations that are connected to a computationally fast transform. We will treat this aspect
somewhat negligently in this workshop.

It is not quite clear from the discussion on representation systems above, why the name of this research
area contains the phrase ”harmonic analysis”. The reason for this is, that virtually every argument evolves
around the Fourier transform or Fourier series. Hence, our first example of a representation system has to be
the system of complex exponentials: (x 7→ e−2πinx)n∈Z for the Hilbert space L2([0, 1]). Indeed, we have that
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Figure 1.1: Left: Pixel representation of a picture of the Radcliffe Observatory; Center: Coefficients of
the representation with respect to complex exponentials; Right: Coefficients corresponding to a wavelet
representation. The pixel- and wavelet representations are very interpretable, while the Fourier representation
is hard to decipher. The wavelet representation is the only one that can be considered efficient.

1. If ‖f‖Hs ≤ 1 then ∥∥∥∥∥f −
N∑

n=−N
cn(f)e−2πin·

∥∥∥∥∥
L2

. N−s+
1
2 ,

i.e., if a function is sufficiently smooth, then the representation by the Fourier series is very efficient.
However, if f is, for example, discontinuous, then we get very slow approximations. The very slow
convergence of the Fourier series for discontinuous functions is called Gibbs phenomenon;

2. The sequence (cn(f))n∈Z shows which frequencies are present in the signal. On the other hand, the
(cn(f))n∈Z conceals all local structures of f , see also Figure 1.1. Moreover, the decay of the coefficients
contains information about the smoothness of the function. Finally, differentiation of a function is
possible by reweighting the Fourier coefficients;

3. In practice the Fourier transform is computed using the fast Fourier transform. This is a well-known
highly computationally efficient algorithm.

We will recall some basics of Fourier analysis and then introduce multiple representation systems, including
Gabor frames, wavelet systems, and curvelet and shearlet systems. Each of these systems have an application
area, where the others fall short.

Although we have acquired a rough understanding of the typical questions of applied harmonic analysis,
it might not be clear, why this field of research should be interesting for a researcher mainly interested in
partial differential equations. Apart from curiosity there are a couple of arguments to look into this subject,
that can hopefully convince a scholar of differential equations.

• Numerical analysis: For every efficient way to discretise functions, there is a numerical analyst that
uses this method to solve PDEs. I cannot back this statement up, due to the fact that is impossible
to check, but it reflects my experience. Let f ∈ L2(Ω), Ω ⊂ R2, L : H1(Ω) → L2(Ω) we aim to find
u ∈ H1

0 (Ω) such that

Lu = f. (1.0.2)

Assume, that we have a weak formulation

a(u, v) := 〈Lu, v〉, for all v ∈ H1
0 (Ω).
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Let (ϕn)n∈N be any basis for H1
0 (Ω), then we define UN := VN := span {ϕn : n ≤ N}. If a is sufficiently

nice, say elliptic, then by Cea’s Lemma, the solutions uN ∈ UN of

a(uN , v) = 〈f, v〉, for all v ∈ VN ,

satisfy ‖uN − u‖H1 . infv∈VN ‖u− v‖H1 . Therefore, if the basis allows very efficient approximations of
the solutions of (1.0.2), then uN will yield a very good approximation of the solution u already for very
small N . If it is associated to a fast transform, than this allows us to solve the discrete problems fast.

Another idea is to choose the spaces VN , UN adaptive. We will see later that for wavelet bases, this
leads to adaptive PDE solvers, that run in optimal complexity.

• Helpful toolkit: The tools that will be presented might also be helpful in theoretical analysis. For
example, in the construction of Hairer’s regularity structures [23], wavelets are used to define a so called
reconstruction operator. The short-time Fourier transform has been found to be a valuable tool to
understand the mapping properties of pseudo-differential operators [18, Chapter 14]. Similarly, wavelets
turn out to be an essential tool to establish mapping properties of Calderon-Zygmund operators, [32].

• Real-world applications: Finally, there are of course plenty of very famous real-world applications
of the techniques described in the sequel. The main codecs for audio, image, and video compression
(mp3, jpeg, H.264/MPEG) are all based on the discrete cosine transform. JPEG2000 is based on the
wavelet transform. One of the most important recent results in physics is the detection of a gravitational
wave generated by the coalescence of two black holes. This was achieved in the Laser Interferometer
Gravitational-Wave Observatory in 2015. This achievement is based on a very thorough post-processing
of the raw measured data. This requires many tools from signal-processing and in particular, a time-
frequency transform using the so-called Wilson bases. In another application in physics, the wavelet
transform was used to denoise and deblur the images from the original non-refurbished Hubble telescope,
which led to its repair in 1993, [25].

We shall start by recalling some essentials on the Fourier transform. We will see that this transform is
fundamentally limited by a number of uncertainty principles. Overcoming these limitations has lead to many
generalised transforms. Among those are the short-time Fourier transform and Gabor systems, the wavelet
transform and the associated systems, and finally directional transforms leading to curvelet and shearlet
systems. Most of the remainder is based on the books: [7, 12, 18, 27, 31].

Disclaimer: As applied harmonic analysis is a large and active field and this workshop is limited to a few
lectures, the following exposition needs to be reasonably brief. As a result, many theorems in this manuscript
will remain unproved, some will be proved only for special cases. Moreover, many results are stated in a
simplified version, to make their proofs simple enough for a short lecture. I encourage every participant of
this course to find the omitted proofs in one of the references mentioned above, or better yet, prove the
results themselves. Moreover, if a result appears to have overly restrictive assumptions, then it might be a
good exercise to try to generalise the result as far as possible.
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Chapter 2

The basics of Fourier analysis

We start by introducing the essentials of Fourier analysis that are most fundamental for the upcoming
discussion. We will omit some proofs and refer to [18] instead.

2.1 The Fourier transform

For d ∈ N, f ∈ L1(Rd) we define the Fourier transform of f by

f̂(ξ) :=

∫
Rd
f(x)e−2πi〈x,ξ〉dx.

If the expressions get to long to put a ˆ over them, we also write F(f) for the Fourier transform of a function
f . Since

|
∫
Rd
f(x)e−2πi〈x,ξ〉dx| ≤

∫
Rd
|f(x)||e−2πi〈x,ξ〉|dx ≤ ‖f‖L1 ,

we get that f̂ ∈ L∞ and since e−2πi〈x,ξ1〉 − e−2πi〈x,ξ2〉 → 0 if ξ1 − ξ2 → 0 it is not hard to see that f̂ is
continuous. In other words, the Fourier transform maps from L1(Rd) to L∞(Rd) ∩ C(Rd).

2.2 Basic operations

For t ∈ Rd, we define the translation operator Tt : L1(Rd)→ L1(Rd) by

(Ttf)(x) := f(x− t), for all x ∈ Rd.

For A ∈ GL(Rd) we define the dilation operator by

DAf(x) :=
√
|det(A)|f(Ax), for all x ∈ Rd.

For a ∈ R \ 0, we set Da := DA, where A = diag(a). For f, g ∈ L1 we define the convolution of f and g by

f ∗ g(x) :=

∫
Rd
f(y)g(x− y)dy.

The following theorem combines a couple of observations about the basic operations.
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Theorem 2.2.1. Let f, g ∈ L1(Rd). Then,

• for t ∈ Rd: F(Ttf)(ξ) = e−2πi〈ξ,t〉f̂(ξ) and F(e2πi〈t,·〉f)(ξ) = Ttf̂(ξ);

• for A ∈ GL(Rd): F(DAf) = 1√
| det(A)|

f̂(A−T ·) = DA−T f̂ ;

• F(f ∗ g) = f̂ · ĝ and F(f · g) = f̂ ∗ ĝ.

If f ∈ Ck and D`
xjf ∈ L

1, for all ` = 1, . . . , k, and j = 1, . . . , d, then

F
(
Dk
xjf
)

(ξ) = (2πiξj)
kf̂(ξ), for all ξ ∈ Rd.

On the other hand, if x`jf ∈ L1(Rd) for ` = 1, . . . , k and j = 1, . . . , d, then f̂ ∈ Ck(Rd) and

F
(
xkj f(x)

)
=

(
i

2π

)k
Dk
ξj f̂(ξ).

The theorem above shows the general principle, that smoothness in spatial domain corresponds to decay
in frequency domain, and functions with fast decay are transformed to very smooth functions. To understand
if the converse principle holds, i.e., if we can identify smoothness or decay properties of f from its Fourier
transform f̂ we first need to be able to invert the Fourier transform.

2.3 The main theorems

The first step towards an inversion of the Fourier transform and towards a Fourier transform on the Hilbert
space L2(Rd) is the theorem of Plancherel.

Theorem 2.3.1 (Plancherel). Let d ∈ N. If f ∈ L1(Rd) ∩ L2(Rd), then

‖f‖L2(Rd) =
∥∥∥f̂ ∥∥∥

L2(Rd)
.

As a consequence, F extends to a unitary operator on L2(Rd) such that

〈f, g〉 = 〈f̂ , ĝ〉, for all f, g ∈ L2(Rd).

The Fourier transform is now obviously invertible and in some cases, we can even give a formula for F−1.

Theorem 2.3.2 (Inversion Formula). Let d ∈ N. If f ∈ L1 ∩ L2(Rd) and f̂ ∈ L1(Rd), then

f(x) =

∫
Rd
f̂(ξ)e2πi〈x,ξ〉dξ, for all x ∈ Rd.

Proof. By Plancherel’s theorem, F is unitary on L2 and thus its inverse is equal to its adjoint. Let g ∈ L1(Rd),
then

〈F(f), g〉 =

∫
Rd

∫
Rd
f(x)e−2πi〈x,ξ〉g(ξ)dxdξ =

∫
Rd
f(x)

∫
Rd
g(ξ)e2πi〈x,ξ〉dξdx = 〈f,F∗(g)〉
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and thus

F∗(g)(x) =

∫
Rd
g(ξ)e2πi〈x,ξ〉dξ.

We can now make the correspondence between smoothness of a function and its Fourier transform more
precise.

Lemma 2.3.3. Let d, n ∈ N and f ∈ L2(Rd). Then: Dα(f) ∈ L2(Rd) for all multiindices |α| ≤ n, if and

only if
∫
Rd(1 + |ξ|2)n|f̂(ξ)|2dξ <∞.

Proof. Let f in C∞c (Rd). By Theorem 2.2.1 we conclude that

F(Dα(f))(ξ) = (2πiξ)αf̂(ξ) almost everywhere.

Hence, by Plancherel’s theorem∑
|α|≤n

‖Dα(f)‖2L2 =
∑
|α|≤n

∫
Rd
|(2πiξ)α|2|f̂(ξ)|2dξ.

It is not hard to see that ∑
|α|≤n

|(2πiξ)α|2 ∼ (1 + |ξ|2)n, for all ξ ∈ Rd.

Thus, for all f ∈ C∞c (Rd) ∑
|α|≤n

‖Dα(f)‖2L2 ∼
∫
Rd

(1 + |ξ|2)n|f̂(ξ)|2dξ.

The general case follows by the density of C∞c (Rd) in L2(Rd).

2.4 Two examples

Let χ[−a/2,a/2] be the characteristic function of [−a/2, a/2]. We shall compute the Fourier transform of
χ[−a/2,a/2]. However, before we do, we can already observe, that we cannot expect F(χ[−a/2,a/2]) to decay

very quickly. Indeed, by the inversion formula, no discontinuous L1(Rd) function can have a Fourier transform
that is again in L1(Rd). On the other hand, Theorem 2.2.1 shows that F(χ[−a/2,a/2]) ∈ Ck for all k ∈ N.

Figure 2.1: Left: The box function χ[−1/2,1/2], Right: The cardinal sine function.

We have that

F(χ[−a/2,a/2])(ξ) =

∫ a
2

− a2
e−2πiξxdx =

e−πiξa − eπiξa

−2πiξ
=

sin(πaξ)

πξ
=: sinc(ξ).
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The function sinc is called cardinal sine function. The second fairly important function is the Gaussian
function given by

x 7→ g(x) := e−πx
2

.

This function has the very convenient property that it is a fixed point of the Fourier transform. In other
words, we have that ĝ = g.

The Gaussian is fairly well localised around 0. But rescaling increases this localisation even more. On the
other hand it destroys the localisation of the Fourier transform by basic computation of Theorem 2.2.1. In
this simple example, it appears as if localisation in space and frequency domain exclude one another. This
connection will be made much more precise in the following section, where we study precisely this trade-off
between localisation in space and in frequency.

Figure 2.2: Left: The Gaussian function g in blue and a rescaled variant 2g(2·) in red; Right: The Fourier
transform F(g) = g and the Fourier transform F(

√
2g(2·)) = 1/

√
2g(·/2).

2.5 Uncertainty principles

An uncertainty principle identifies a limit to the joint localisation of a signal in spatial- and frequency domain.
We start with one of the simplest uncertainty principles: Assume f ∈ L2(R) be such that supp f is compact.
Then there exists Ω > 0 such that

f̂(ξ) =

∫ Ω

−Ω

f(x)e−2πixξ, for all ξ ∈ R.

In fact, the expression above also makes sense for ξ ∈ C and shows that

ξ → f̂(ξ)

is an entire function. Hence, if f̂ 6= 0, then it cannot vanish on a subset of R that has an accumulation point.
We conclude that supp f and supp f̂ compact implies f = 0.

The classical uncertainty principle is often named Heisenberg-Pauli-Weyl inequality and makes a statement
on the localisation of a function and its Fourier transform around two points. It is also demonstrated that
shifted and modulated Gaussians have the best time-frequency localisation.

Theorem 2.5.1 ([18]). Let f ∈ L2(R) and a, b ∈ R, then∫
R

(x− a)2|f(x)|2dx
∫
R

(ξ − b)2|f̂(ξ)|2dx ≥ 1

16π2
‖f‖4L2 .

Equality holds for shifted and modulated Gaussian functions.
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Proof. We shall only proof the result for a = b = 0 and f ∈ S(R) (Schwartz functions). For s < t we compute
by partial integration and the Leibniz rule that∫ t

s

xf(x)f ′(x)dx =
(
t|f(t)|2 − s|f(s)|2

)
−
∫ t

s

|f(x)|2 + xf ′(x)f(x)dx.

Letting s→ −∞ and t→∞ we get that∫
R
|f(x)|2dx = −2

∫
R
xf ′(x)f(x)dx

and by the Cauchy-Schwarz inequality, we conclude∫
R
|f(x)|2dx ≤ 2

(∫
R
|xf(x)|2dx

) 1
2
(∫

R
|f ′(x)|2dx

) 1
2

= 4π

(∫
R
|xf(x)|2dx

) 1
2
(∫

R
|ξf̂(ξ)|2dξ

) 1
2

,

where the last step follows from Theorem 2.2.1. Question: Why do we have equality for the Gaussian?

Another popular method to prove the uncertainty principle is using the fact that for any two self-adjoint
(potentially unbounded) operators A,B in a Hilbert space H it holds that

‖(A− a)f‖‖(B − b)f‖ ≥ 1

2
| 〈(AB −BA)f, f〉 |, for all f ∈ H.

This result can be applied to the multiplication and differentiation operators defined by

(Af)(x) := xf(x) and (Bf)(x) :=
1

2πi
f ′(x).

The classical uncertainty principle can interpreted thinking of |f |2 as a probability density function and
setting a =

∫
x|f(x)|2dx, then (∫

R
(x− a)2|f(x)|2dx

)
is the standard deviation of f . In other words, the product of the standard deviations of |f |2 and |f̂ |2 is lower
bounded.

Before we wrap up the introduction on Fourier analysis, we shall mention one more uncertainty principle.
This result compares essential supports of spatial- and frequency representations of a function.

We say that a function f ∈ L2(R) is ε-concentrated on a measurable set T ⊆ R if(∫
T c
|f(x)|2dx

) 1
2

≤ ε‖f‖L2 .

If 0 < ε < 1/2, then most of the energy of f is located in T . If ε = 0 then T is the support of f .

Theorem 2.5.2 (Donoho-Stark Uncertainty Principle, [18]). Suppose f ∈ L2(R), f 6= 0 is εT -concentrated

on T ⊂ R and f̂ is εΩ-concentrated on Ω ⊆ R. Then

|T ||Ω| ≥ (max{1− εT − εΩ, 0})2.

This result now shows really clearly the essence of the uncertainty principles. If the energy in spatial
domain is really concentrated on a small set, then it has to be really spread out in frequency and vice versa.
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Chapter 3

Short-time Fourier transform and
Gabor frames

The uncertainty principle of the Fourier transform demonstrated that we cannot have good localisation of a
signal in space and frequency at the same time. Additionally, the example of the cardinal sine function shows
that very small changes to a signal, on a very small domain, can have huge effects on the Fourier transform
of that signal. This means that as long as we do not know the whole signal, we cannot compute even parts of
the Fourier transform and vice versa. At the very least, this is not how the most well-known converter of
frequency signals to information works like. The human ear does not require us to listen to a full song before
we can understand parts of it.

To overcome this lack of locality, the so-called short-time Fourier transform was introduced.

Definition 3.0.1. Let g 6= 0. Then, the short-time Fourier transform of a function f ∈ L2(R) with window
g is defined by

Vgf(t, ξ) :=

∫
R
f(x)g(x− t)e−2πixξdx = 〈f,MξTtg〉 for ξ, t ∈ R,

where Mξ is the modulation operator:

Mξh(x) := e−2πixξh(x), for all x ∈ R.

So instead of taking the Fourier transform of the whole function, we introduce a window function φ,
localise f in space, by multiplying with Ttg, and then take the Fourier transform. If g is a function with fast
decay, we can think of Vgf(t, ·) as the representation of all frequencies that occur in a neighborhood of t. In
this sense, this representation is very closely related to a musical score.

Similar to the Fourier transform, this transform is an isometry and admits a helpful inversion formula:

Theorem 3.0.2 (Orthogonality Relations and inversion formula, [18]). For f1, f2, g1, g2 ∈ L2(R) we have

〈Vg1f1, Vg2f2〉L2(R2) = 〈f1, f2〉〈g1, g2〉.

For any γ, g ∈ L2(R) and 〈g, γ〉 6= 0, we have that for all f ∈ L2(R):

f =
1

〈γ, g〉

∫
R

∫
R
Vgf(x, ξ)MξTxγdξdx.
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Figure 3.1: A collection of elements from a Gabor system, resulting from translations and modulations of a
generating function.

3.1 Gabor systems

We can now introduce our first representation system, apart from the system of complex exponentials from
the introduction.

Definition 3.1.1. Let g ∈ L2(R) and let a, b > 0. Then the Gabor system G(g, a, b) is defined by

G(g, a, b) := {gam,bn := MbnTamg := e−2πibn·g(· − am) : m,n ∈ Z}.

We want to study this system from the point of view that was layed out in the beginning of the lecture.
However, it is not clear if G(φ, a, b) forms a basis, or is even a spanning set. Moreover, even if G(φ, a, b)
were spanning, there does not seem to be a direct method to retrieve the coefficients (cn,m(f))m,n∈Z of an
expansion

f =
∑
m,n∈Z

cm,n(f)gam,bn,

let alone show that they contain any information about f .
To study these questions we first need to make a small detour and introduce frames.

3.2 Frames

A frame is a generalisation of an orthonormal basis. Recall that by Parseval’s identity, every orthonormal
basis (φn)n∈N for a Hilbert space H satisfies:

‖f‖2H =
∑
n∈N
|〈f, φn〉H|2.

We get to the definition of a frame by replacing the equality above, by two inequalities.

Definition 3.2.1. Let H be a Hilbert space. A sequence (φn)n∈N ⊂ H is called a frame, if there exist
0 < A ≤ B such that for all f ∈ H:

A‖f‖2H ≤
∑
n∈N
|〈f, φn〉H|2 ≤ B‖f‖2H.

If A = B is possible, we call the frame tight.
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Clearly, every orthonormal basis is a frame. However, the elements of a frame do not have to be
orthonormal, or even linearly independent. Nonetheless, a frame needs to span the Hilbert space. Indeed, if

span {φn, n ∈ N} 6= H, then there exists 0 6= f ∈ span {φn, n ∈ N}
⊥

. This implies that∑
n∈N
|〈f, φn〉H|2 = 0,

which contradicts A > 0. A couple of standard examples of frames are

• The Mercedes Benz frame:

φ1 =

(
1

0

)
, φ2 =

(
−1/2√

3/2

)
, φ3 =

(
−1/2

−
√

3/2

)
,

is a tight frame for R2 with frame bounds A = B = 3/2.

• Let (φn)n∈N be an orthonormal basis for H, then

φ1, φ1, φ2, φ2, . . . ,

is a frame for H with frame bound A = B = 2.

• Let (φn)n∈N be an orthonormal basis for H, then

φ1, φ1, φ2, φ3, φ4 . . . ,

is a frame for H with frame bound A = 1, B = 2.

We introduce two operators associated to a frame.

Definition 3.2.2. Let (φn)n∈N ⊂ H be a frame for H, then the operator

T : H → `2(N), f 7→ (〈f, φn〉)n∈N

is called analysis operator of (φn)n∈N. The operator

T ∗ : `2(N)→ H, (cn)n∈N 7→
∑
n∈N

cnφn

is called synthesis operator of (φn)n∈N.

We make two observations: first, T is a bounded operator since

‖Tf‖2`2 =
∑
n∈N
|〈f, φn〉|2 ≤ B‖f‖2H

per definition of a frame. Second, as already suggested by the notation, T ∗ is the adjoint of T . Indeed, if we
ignore summability issues, then for c ∈ `2, g ∈ H

〈T ∗c, g〉H =
∑
n∈N

cn〈φn, g〉H =
∑
n∈N

cn〈g, φn〉H = 〈c, Tg〉`2 .

Now we have seen, that the analysis operator is continuous, and per construction it is also injective and its
inverse is a bounded operator defined on ran(T ). Moreover, reconstructing f from T (f) is very simple, by
using the concept of a dual frame, its definition first requires us to study the so-called frame operator.
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Definition 3.2.3. Let (φn)n∈N ⊂ H be a frame for H. Then,

S = T ∗T : H → H, f 7→
∑
n∈N
〈f, φn〉φn

is called frame operator of (φn)n∈N.

We have the following theorem:

Theorem 3.2.4 ([6]). Let (φn)n∈N ⊂ H be a frame with frame bounds A,B. Then, the operator S is
self-adjoint with spectrum σ(S) ⊆ [A,B] . In particular, S possesses a bounded inverse.

Proof. We have that
〈Sf, f〉 = 〈Tf, Tf〉 = ‖Tf‖2`2 .

Hence
A‖f‖2H ≤ 〈Sf, f〉 ≤ B‖f‖2H.

So the numerical range of S is a subset of [A,B] which yields the result.

Definition 3.2.5. Let (φn)n∈N ⊂ H be a frame for H with frame operator S, then we define by (φ̃n)n∈N :=
(S−1φn)n∈N the canonical dual frame of (φn)n∈N

It is not hard to verify that (S−1φn)n∈N is a frame itself. Finally, we get a convenient way of reconstructing
a signal from its analysis coefficients.

Theorem 3.2.6 ([6]). Let (φn)n∈N ⊂ H be a frame for H with frame operator S then we have

• The reconstruction formula: For all f ∈ H

f =
∑
n∈N
〈f, φn〉φ̃n.

• The decomposition formula: For all f ∈ H

f =
∑
n∈N
〈f, φ̃n〉φn.

Proof. We have that for all f ∈ H

f = S−1Sf = S−1
∑
n∈N
〈f, φn〉φn =

∑
n∈N
〈f, φn〉S−1φn.

This yields the reconstruction formula. From f = SS−1f , we deduce the decomposition formula by similar
means.

We have now collected all the frame theory, that we will need. However, one comment is in order. In
contrast, to the three main objectives of applied harmonic analysis that were posed at the beginning of the
lecture, we see, that, if we work with frames, instead of bases, then we need to ask more questions. Indeed,
for a frame, there are now two types of efficient representation or sparsity. We say that a signal f is analysis
sparse with respect to a frame if Tf can be well approximated with only few terms. We say that a signal f is
synthesis sparse with respect to a frame if there exists a vector c with few non-zero entries such that f is well
approximated by T ∗c. The same two points of view now appear when we ask about an interpretation and
manipulation of a transform.
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3.3 Gabor frames

We continue our analysis of Gabor systems, and aim at understanding under which conditions a Gabor system
G(g, a, b) forms a frame. We start with very good news. First of all, if G(g, a, b) is a frame, then its dual
frame is very easy to compute.

Theorem 3.3.1 ([18]). Let g ∈ L2(R), a, b > 0. Suppose that G(g, a, b) forms a frame for L2(R), then the
canonical dual frame of G(g, a, b) has the form (MbmTan(S−1g))m,n∈Z.

In other words, the canonical dual frame of a Gabor frame is again a Gabor frame and we can compute
its window function easily. Moreover, it there are easily verifiable conditions guaranteeing that a system
is a Gabor frame. We have the following result describing a large set of Gabor frames known as Painless
Nonorthogonal Expansions, [13].

Theorem 3.3.2 ([12]). Let 0 < ab ≤ 1, and let g be such that supp g ⊂ [0, 1/b]. Then G(g, a, b) forms a
frame for L2(R) if and only if there exist A,B > 0 such that

A ≤ 1

b

∑
m∈Z
|g(t− am)|2 ≤ B for a.e. t ∈ R. (3.3.1)

We see that if ab = 1, then (3.3.1) cannot be satisfied if g is continuous. If ab < 1, then even a smooth
function g can satisfy (3.3.1). Finally, if ab and g is as in the theorem, then G(g, a, b) cannot form a frame.
There appears to be something special about the threshold ab ≤ 1. In fact, this upper bound hold even
without imposing any assumption on the support of g.

Theorem 3.3.3 ([12]). Let g ∈ L2(R), a, b > 0:

• If G(g, a, b) forms a frame, then ab ≤ 1

• If G(g, a, b) forms an orthonormal basis, then ab = 1.

Frames possible
ab = 1

ab ≤ 1

ONB possible

No frames here

Figure 3.2: Depiction of the situation of Theorem 3.3.3. A Gabor frame only exists if the sampling parameter
a, b satisfy ab ≤ 1. If ab = 1 then even ONBs are possible.
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We shall conclude this discussion on Gabor systems by one of the main motivations for wavelet systems,
that will be introduced in the next chapter. In fact, while Theorem 3.3.3 does not rule out Gabor systems
that form ONBs, it turns out, that all such systems must have generating windows that have very bad time
frequency localisation. This is the content of the famous Balian-Low Theorem:

Theorem 3.3.4 (Balian-Low Theorem, [18]). Let g ∈ L2(R). If G(g, a, b) is an orthonormal basis, then(∫
R
t2|g(t)|2dt

)(∫
R
ξ2|ĝ(ξ)|2dt

)
=∞. (3.3.2)

Proof. Let G(g, a, b) be an orthonormal basis. Then g 6= 0 and thus (3.3.2) is equivalent to∫
R
t2|g(t)|2dt =∞ or

∫
R
ξ2|ĝ(ξ)|2dt =∞.

We assume towards a contradiction that both integrals above are finite. As g ∈ L2 we conclude with Lemma
2.3.3 that g ∈ H1. We define two operators

X : L2(R, tdt)→ L2(R), (Xf)(t) := tf(t);

P : H1(R)→ L2(R), (Pf)(t) := −2πif ′(t).

Per assumption X(f), P (f) ∈ L2 and G(g, a, b) is an orthonormal basis, hence

〈Xg, Pg〉 =
∑
m,n∈Z

〈Xg, gam,bn〉〈gam,bn, Pg〉. (3.3.3)

Let us analyse the expressions individually. We have that

〈Xg, gam,bn〉 = 〈Xg,MamTbng〉 = 〈g,XMamTbng〉.

Moreover,
XMamTbng(t) = te−2πiamtg(t− bn) = MamTbnXg(t) + bnMamTbng(t).

By the orthogonality of MamTbng(t) and g we get that

〈Xg, gam,bn〉 = 〈g,MamTbnXg(t)〉.

Finally, the adjoint of MamTbn can be computed to be e2πiambnM−amT−bn. This yields that

〈Xg, gam,bn〉 = e2πiambn〈g−am,−bn, Xg〉.

By the same argument, we get that

〈gam,bn, Pg〉 = e−2πiambn〈Pg, g−am,−bn〉.

This shows with (3.3.3) that

〈Xg, Pg〉 = 〈Pg,Xg〉.

We have that for g ∈ domXP ∩ domPX:

〈(XP − PX)g, g〉 = −2πi〈g, g〉.

Let us assume that g ∈ domXP ∩ domPX. (The general case can be shown via approximation.) Then we
get that

0 = 〈Pg,Xg〉 − 〈Xg, Pg〉 = 〈(XP − PX)g, g〉 6= 0,

which is a contradiction.
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Chapter 4

Wavelets

There are two main problems with Gabor systems. First of all, if the window function has a very large
support, then the transform is not very well localised. This means that, for example, if a signal is smooth
except for one discontinuity, then many coefficients of a Gabor representation of this signal will be large and
so the representation is not very sparse. Additionally, the Balian-Low theorem showed that we cannot have
nice Gabor orthonormal bases.

An idea, that surprisingly settles both problems is to use a window with flexible size. The key idea is the
following. Instead of translating and modulating a generator window, we now use translations and dilations.
Thereby, the signal is analysed at different resolutions.

4.1 Continuous wavelet transform

To stay parallel to the previous constructions, we first start with a continuous transform.

Definition 4.1.1. Let ψ ∈ L2(R). The continuous wavelet transform associated with the wavelet ψ of a
function f ∈ L2(R) is defined as

Wψ(f)(a, b) : =

∫
R
f(t)a−

1
2ψ

(
t− b
a

)
dt

= 〈f, TbDa−1ψ〉
= (f ∗Da−1ψ∗)(b),

where ψ∗(t) = ψ(−t), and a, b ∈ R.

Interestingly enough, the continuous wavelet transform is an isometry if the wavelet satisfies an admissibility
condition, and it admits an inversion formula.
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Theorem 4.1.2 ([12]). Let 0 6= ψ ∈ L2(R) be such that

Cψ :=

∫ ∞
0

|ψ̂(ξ)|2

ξ
dξ <∞.

Then, any f ∈ L2(R) satisfies

f =
1

Cψ

∫ ∞
0

∫
R
Wψ(f)(a, b)TbDa−1ψdb

da

a2
(4.1.1)

and

‖f‖2L2 =
1

Cψ

∫ ∞
0

∫
R
|Wψ(f)(a, b)|2dbda

a2
.

Proof. Recall that Wψ(f)(a, b) = (f ∗Da−1ψ∗)(b). We only demonstrate the isotropy property.∫ ∞
0

∫
R
|Wψ(f)(a, b)|2db =

∫ ∞
0

∫
R
Wψ(f)(a, b) ·Wψ(f)(a, b)db

da

a2

=

∫ ∞
0

∫
R
(f ∗Da−1ψ∗)(b)(f ∗Da−1ψ∗)(b)db

da

a2

=

∫ ∞
0

∫
R
f̂(ξ)F(Da−1ψ∗)(ξ)f̂(ξ)F(Da−1ψ

∗
)(ξ)dξ

da

a2

=

∫ ∞
0

∫
R
|f̂(ξ)|2|F(Da−1ψ∗))(ξ)|2dξ da

a2

=

∫
R
|f̂(ξ)|2

∫ ∞
0

|F(Da−1ψ∗))(ξ)|2 da
a2
dξ.

We compute that for all ξ ∈ R

F(Daψ
∗))(ξ) = DaF(ψ∗)(ξ) =

√
aψ̂(aξ).

Hence we get that ∫ ∞
0

|F(Da−1ψ∗))(ξ)|2 da
a2

=

∫ ∞
0

|ψ̂(aξ)|2

a
da =

∫ ∞
0

|ψ̂(a)|2

a
da,

where the last line holds by transforming a→ aξ if ξ 6= 0 and by the symmetry of ψ̂ (since ψ is real-valued).

The property ∫ ∞
0

|ψ(ξ)|2

ξ
dξ <∞

is often called Calderon condition and (4.1.1) is called Calderon’s reproducing formula. To guarantee the

Calderon condition, we need that ψ̂(0) = 0. This is equivalent to∫
R
ψ(x)dx = 0.

In other words, an admissible wavelet needs to oscillate.
We have claimed that this wavelet transform overcomes the problems of the short-time Fourier transform.

Indeed the following theorem shows that the behaviour of the wavelet transform asymptotically only depends
on local smoothness. Variants of the following result exist in various forms in the literature. We present here
the simplest estimate imaginable.
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Theorem 4.1.3. Let L ∈ N , ψ ∈ L2(R), supp ψ ⊂ [−1, 1], and let ψ have L vanishing moments, i.e, ψ is
orthogonal on all polynomials of degree less than L. If f ∈ L2(R) is L-times continuously differentiable on a
neighborhood of b ∈ R, then

|Wψ(f)(a, b)| . aL+ 1
2 for a→ 0.

Proof. We have that

|Wψ(f)(a, b)| = |
∫
R
f(x)TbDa−1ψ(x)dx| = |

∫
Ba(b)

f(x)TbDa−1ψ(x)dx|.

Using a Taylor expansion of f of order L− 1 around d we get that

|
∫
Ba(b)

f(x)TbDa−1ψ(x)dx| .
∫
Ba(b)

|x∗ − b|L|TbDa−1ψ(x)|dx,

for an x∗ ∈ Ba(b). Thus

|Wψ(f)(a, b)| . aL‖TbDa−1ψ‖L1 = aL+ 1
2 .

Using the inversion formula one can also produce a converse to Theorem 4.1.3. In Figure 4.1 we compute
the continuous shearlet transform of a piecewise smooth signal. We observe that the transform decays slowly
at translation points associated to singularities of the signal. Additionally, the areas of slow decay become
better and better localised for smaller a.
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Figure 4.1: Top: A signal with multiple singularities of different types. Bottom: Continuous wavelet
transform of the signal, with b varying along the x axis and varying scale a along the y-axis. The wavelet
used in the computation is a symmetric wavelet with four vanishing moments, called symlet.

4.2 Discrete wavelet systems

Yet again, we find ourselves in the position that we constructed a continuous transform with very interesting
properties and we would like to transform it into a discrete system.
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Definition 4.2.1. Let ψ ∈ L2(R) be a wavelet and a, b > 0. Then, the associated wavelet system is defined
as

W(ψ, a, b) :=
{
ψj,m := ajψ(aj · −bm) : j,m ∈ Z

}
.

In contrast to Gabor frames, there do exist nice wavelet orthonormal bases. Because of this, we do
not want to analyse conditions on the frame properties of wavelets in too much detail. In essence, if ψ is
admissible and decays sufficiently fast in time and frequency, then there exist a, b > 0 such that W(ψ, a, b) is
a frame. To construct wavelet systems that are orthonormal bases, the celebrated method of multiresolution
approximation is usually used.

Definition 4.2.2. A multiresolution approximation is a sequence of closed subspaces (Vj)j∈Z of L2(R) such
that the following conditions are fulfilled:

1. Vj ⊂ Vj+1 for all j ∈ Z;

2.
⋃
j∈Z Vj = L2(R);

3.
⋂
j∈Z Vj = {0};

4. f ∈ V0 if and only if f(2j ·) ∈ Vj;

5. There is a function ϕ ∈ L2(R) such that {Tmϕ : m ∈ Z} is an orthonormal basis for V0. We call ϕ
scaling function for the MRA.

We can think of Vj as spaces of different resolution. Indeed, as the resolution increases, i.e., j →∞, we
have

‖f − PVjf‖L2 → 0, for every f ∈ L2(R).

On the other hand, if j → −∞, then

‖PVjf‖L2 → 0, for every f ∈ L2(R).

A multiresolution approximation will turn out to be a very helpful tool to generate multiscale orthonormal
bases for L2(R). This is done by introducing the wavelet spaces Wj , which are defined by

Wj := Vj+1 	 Vj .

The spaces Wj can now be thought of as containing the details of the signal that were not observable at
resultion j but are observable at resolution j + 1. Per construction, we have that

Vj = Wj−1 ⊕ Vj−1 = Wj−1 ⊕Wj−2 ⊕ Vj−2 = . . . .

This demonstrates that

L2(R) =
⊕
j∈Z

Wj =
⊕
j≥j0

Wj ⊕ V0.

Additionally, it is not hard to see, that if f ∈W0 then f(2j ·) ∈Wj . This shows that, if we find a function ψ
such that {Tmψ : m ∈ Z} is an orthonormal basis for W0, then

{TmD2jψ : j,m ∈ Z}

and for all j0 ∈ Z
{TmD2jψ : j ≥ j0,m ∈ Z} ∪ {TmD2j0φ : m ∈ Z}

are orthonormal bases for L2(R). The problem of producing a wavelet bases is now reduced to finding an
MRA and an associated wavelet function. In fact, for any scaling function there exists an associated wavelet
function by the following result.
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Theorem 4.2.3 ([31]). Let φ ∈ L2(R) be a scaling function for an MRA (Vj)j∈Z, then there exists a function
ψ such that for all j ∈ Z: {ψj,m : m ∈ Z} is an orthonormal basis for the associated wavelet spaces Wj . One
possibility to construct ψ is by setting

ψ̂(ξ) = e−2πi ξ2h

(
ξ

2
+

1

2

)
φ̂

(
ξ

2

)
,

where h is a 1-periodic filter such that

φ̂(2ξ) =
1√
2
h(ξ)φ̂(ξ).

Instead of proving the result above, we will analyse a standard example of a multiresolution approximation
due to Haar [22].

Definition 4.2.4. Let φ := χ[0,1]. We call φ the Haar scaling function and define for j ∈ Z

Vj :=
{
φj,m = 2−

j
2φ(2j · −m) : m ∈ Z

}
the Haar scaling spaces. Moreover, we define by ψ := χ[0, 12 ) − χ[ 12 ,1] the Haar wavelet and for j ∈ Z

Wj :=
{
ψj,m = 2−

j
2ψ(2j · −m) : m ∈ Z

}
.

The spaces Wj are then called the Haar wavelet spaces.

Of course we want to find out if (Vj)j∈Z is an MRA φ the scaling function, and if (Wj)j∈Z are the
associated wavelet spaces.

Figure 4.2: Left: The Haar scaling function, Right: The Haar wavelet. These functions are clearly orthogonal
to each other.

Theorem 4.2.5 ([31]). The Haar scaling spaces form an MRA. Additionally, we have that

Wj ⊕ Vj = Vj+1.

Proof. We check each property of an MRA individually:
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We have that φj,m = χ2−j [m,m+1] = χ2−j−1[2m,2m+1] + χ2−j−1[2m+1,2m+2]. This yields Vj ⊂ Vj+1. The
space Vj contains all functions that are piecewise constant on intervals with start and endpoints in 2−jZ.
This implies the second and third property. If f ∈ V0, then there is a sequence fn =

∑n
k=1 ckφ0,m converging

to f for n → ∞. Clearly, fn(2j ·) =
∑n
k=1 2−

j
2 ckφj,m ∈ Vj and fn(2j ·) converges to f(2j ·). The converse

holds with the same argument. Since supp Tmφ = [m,m+ 1] we have that Tmφ, Tnφ are orthogonal if m 6= n.
Thus the last property follows.

Finally, it is obvious that Wj is orthogonal to Vj since all elements of Vj are constant in R \ 2−jZ and
elements of Wj integrate to 0 over intervals of length 2−j with start points in 2−jZ, see also Figure 4.2 for an
illustration. How to get

Vj+1 = Wj ⊕ Vj
is sketched in Figure 4.3.

Figure 4.3: Illustration of the projection of a function into Vj and Wj . The top left shows a function
approximated in a scaling space. We then see that if two adjacent scaling functions are grouped together,
they can be interpreted as a scaling function on a lower scale plus a wavelet update, which is exactly given by
the Haar wavelet. This shows the decomposition of Vj+1 into Vj and Wj .

We have just introduced the first orthogonal wavelet bases, the Haar wavelet basis. If one contemplates
what a good wavelet basis would be, then it, unfortunately, becomes apparent quickly, that a wavelet basis is
a very bad wavelet basis. Indeed, three properties seem to be particularly important for wavelets, for various
reasons that we have seen and will see repeatedly in this manuscript:

• Spatial decay, i.e., ψ(x) . (1 + |x|)−P for hopefully very large P . Even better would be supp ψ compact.

• Regularity/ Fourier decay, i.e., ψ̂(x) . (1 + |x|)−M for hopefully very large M . Even better would be

supp ψ̂ compact, but by the uncertainty principle this can only be achieved if supp ψ is not compact.

• Vanishing moments, i.e., ψ should be orthogonal on all polynomials of order less than L− 1 for a large
L.

In fact, the Haar wavelet has compact support, but is not continuous, i.e., its Fourier transform is not in
L1(R) and it has only one vanishing moment. Nonetheless, there are plenty of nice wavelet constructions.
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We finally present a celebrated theorem from [12] which demonstrates that for any given decay, in space,
frequency and number of vanishing moments, there exists a wavelet with these characteristics, which yields
an orthonormal basis for L2(R).

Theorem 4.2.6 ([12]). There are constants c > 0 such that for every r ∈ N there exists an MRA with
scaling function φ and associated wavelet ψ such that

• φ, ψ ∈ C r
c (R);

• ψ has r vanishing moments;

• supp φ, supp ψ ⊂ [0, 2r].

4.3 Higher dimensions, bounded domains

The main area of application of wavelets is image processing. Hence, it is clear that we need a two-dimensional
variant of the wavelet transform. Moreover, as most images are defined on bounded domains, whereas wavelet
systems are defined on R we need to adapt to this situation as well. Both of these issues are also important if
one wants to solve PDEs using a wavelet discretisation. We shall mention how to overcome both of these
issues briefly below.

4.3.1 Higher dimensions

It is clear, that for any orthonormal basis (φn)n∈I for a Hilbert space H and some index set I, the set

{φn ⊗ φm : n,m ∈ I}

is an orthonormal basis for H⊗H. This gives a simple construction of a wavelet basis for L2(Rd), d ∈ N, but
the resulting system is not a proper multiscale system. In fact, the elements can have very different sizes in
each coordinate direction. A different approach is to define a two-dimensional multiresolution approximation
(V 2
j )j∈Z by

V 2
j := Vj ⊗ Vj

where Vj is a one-dimensional multiresolution approximation. The associated wavelet spaces should again
correspond to the differences between one level of resolution to the next. Thus, we set

V 2
j+1 := V 2

j +W 2
j .

Since
V 2
j+1 = (Vj +Wj)⊗ (Vj +Wj) = V 2

j ⊕ (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj),

we get that
W 2
j = (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj).

This implies the following theorem.

21



Theorem 4.3.1 ([31]). Let (Vj)j∈Z be an MRA for L2(R) with scaling function φ and wavelet ψ. We define
for (x1, x2) ∈ R2

ψ1(x1, x2) : = φ(x1)ψ(x2)

ψ2(x1, x2) : = ψ(x1)φ(x2)

ψ3(x1, x2) : = ψ(x1)ψ(x2).

Then {
ψkj,m := 2−jψk(2jx−m) : m ∈ Z2, k = 1, 2, 3

}
is an orthonormal basis for W 2

j . Moreover,{
ψkj,m : m ∈ Z2, j ∈ Z, k = 1, 2, 3

}
and{

ψkj,m : m ∈ Z2, j ≥ j0, k = 1, 2, 3
}
∪
{
φj0,m := 2−j0φ(2j0x−m) : m ∈ Z2

}
are ONBs for L2(R2) and any j0 ∈ Z.

It goes without saying that one can make a similar construction for any dimension d ∈ N.

4.3.2 Bounded domains

We shall discuss three approaches to adapt a wavelet basis for L2(R) to a bounded domain [0, 1].
The first idea that comes to mind is to simply truncate. Let (φn)n∈N be a wavelet basis, then we define

for n ∈ N:
φ[0,1]
n := χ[0,1]φn.

This approach destroys a couple of properties. In fact, φ
[0,1]
n is not an orthonormal basis for L2([0, 1]). But it

is not hard to see, that it is still a tight frame with frame bounds A = B = 1. We have that〈
f, ψ

[0,1]
j,m

〉
L2([0,1])

=
〈
f̃ , ψj,m

〉
L2(R)

for an f̃ which equals f on [0, 1] and 0 on (−∞, 0) ∪ (1,∞). Hence, if f is smooth but f̃ is not, then

〈f, ψ[0,1]
j,m 〉L2([0,1]) behaves as if f was not smooth.

A second approach is to periodise the wavelet elements by setting for all m ≤ 2j

ψ
[0,1]
j,m :=

∑
k∈Z

ψj,m(· − k).

This construction yields an orthonormal basis with the same boundary behaviour as the truncated wavelet
system if the periodisation of f is not smooth.

The last approach, which, in fact, overcomes the problem of artificial singularities at the boundaries is to
adapt the boundary elements, i.e., the wavelets the support of which intersects {0} and {1}, in a way such
that they still have vanishing moments. This is done by constructing an MRA for L2([0, 1]) by setting V0 to
be the span of all shifted scaling functions fully supported in (0, 1) and all polynomials up to a certain order L.
The resulting wavelet spaces are then orthogonal on these polynomials, hence have vanishing moments. We
shall not provide the details of this construction, and refer to [10]. Some boundary adapted scaling functions
described above are depicted in Figure 4.4.

22



-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 4.4: Three elements of a boundary adapted wavelet system. The right-most image shows a scaling
function which was not adapted to the boundary. In the middle, already minor adaptation is visible. The
leftmost scaling function was strongly adapted to make the reproduction of polynomials possible.

4.4 Sobolev spaces and approximation theory

4.4.1 Characterisation of smoothness classes

Consider a wavelet ψ ∈ L2(R) such that W(ψ, 2, 1) is a frame for L2(R). Then

|f |2H1(R) = ‖f ′‖2L2 ∼
∑
j,m∈Z

|〈f ′, ψj,m〉|2 =
∑
j,m∈Z

22j |〈f, (ψ′)j,m〉|2.

In the situation above, we can characterise the Sobolev semi-norm by a weighted `2 norm of wavelet
coefficients with respect to W(ψ′, 2, 1). Another example, is given by considering the Shannon wavelet
ψ := F−1(χ[−1,−1/2]∪[1/2,1]) with the associated scaling function φ := F−1(χ[−1/2,1/2]). We have that

‖f‖2Hs(R) ∼
∫
R

(1 + |ξ|2)s|f̂(ξ)|2dξ

=

∫ 1/2

−1/2

(1 + |ξ|2)s|f̂(ξ)|2dξ +

∞∑
j=0

∫
[−2j ,−2j−1]∪[−2j−1,−2j ]

(1 + |ξ|2)s|f̂(ξ)|2dξ

∼
∫ 1/2

−1/2

|φ(ξ)|2|f̂(ξ)|2dξ +

∞∑
j=0

∫ 2j

−2j
22sj |ψ(2−j ·)|2|f̂(ξ)|2dξ

=
∑
m∈Z
|〈φ0,m, f〉|2 +

∞∑
j=0

∑
m∈Z

22sj |〈ψj,m, f〉|2,

where the last estimate follows from the fact, that (2−
j
2 e−2πiξm/2j )m∈Z is an orthonormal basis for L2([−2j , 2j ])

and the Parseval and Plancherel identities.
In fact, a characterisation of norms describing smoothness by wavelets is possible in much more generality.

Indeed, we have the following theorem, the proof of which can be found in [9, Theorem 3.7.7]. We denote
from now on the Besov spaces

Bsp,q :=

{
f ∈ S ′(R) :

∥∥∥(∥∥2sjF−1γjFf
∥∥
Lp

)
j≥0

∥∥∥
`q

}
,

where (γj)j∈Z is a smooth partition of unity function such that supp γj ⊂ [−2j+1,−2j−1] ∪ [2j−1, 2j+1] if
j ≥ 1 and supp γ0 ⊂ [−2, 2]. This definition is taken from [37], but there exist plenty of alternative definitions
of Besov spaces, see e.g. [7].
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Theorem 4.4.1 ([7]). Assume that ψ, φ ∈ Lr for some r ∈ [1,∞] such that

{TmD2jψ : j ≥ 0,m ∈ Z} ∪ {Tmφ : m ∈ Z}

forms an orthonormal basis. Let 0 < p ≤ r and let n ∈ N be the number of vanishing moments of ψ.
Additionally, let s, q0 > 0 be such that ψ ∈ Bsp,q0 . Then we have for all t > 0 such that 1/p − 1/r < t <
min{s, n} that for all q > 1 that

‖f‖Btp,q ∼

∑
j∈Z

2tj2( 1
2−

1
p )j

(∑
m∈Z
|〈f, ψj,m〉|p

)1/p
q1/q

. (4.4.1)

A similar result holds for higher dimensions d ∈ N, if all terms of the form 1/p− 1/r or (1/p− 1/2) are
replaced by d(1/p− 1/r) or d(1/p− 1/2). Moreover, the result can be generalised to bounded domains, and
even to wavelets that do not form orthonormal bases, but only so-called bi-orthogonal bases.

Two features of wavelet coefficients lead to high Besov regularity, i.e., a high t in (4.4.1). On the one
hand, summability in `p for a sufficiently small p > 0, and, on the other hand, weighted summability in
j. These two types of decay are associated to two different types of approximation as we shall see in the
following two subsections.

4.4.2 Linear approximation and preconditioning

Setting p = q = 2 and taking t ∈ N we have Bt2,2(R) = Ht(R) with equivalent norms and hence we get the
reproduction of Sobolev norms. This norm equivalence leads to two interesting conclusions. It enables us to
estimate the error of approximating a function f by a sum of wavelets, if we know the smoothness of f and it
allows to find suitable preconditioning matrices if we choose to discretise a differential equation by wavelets.

Let ψ, φ be such that (4.4.1) is satisfied for p = q = 2, t ∈ N. Assume f ∈ Ht(R) with ‖f‖Ht = 1. We
define

fJ :=
∑
m∈Z
〈f, φm〉φm +

∑
0≤j≤J,m∈Z

〈f, ψj,m〉ψj,m.

Then we have that
‖f − fJ‖2L2 =

∑
j,m∈Z

|〈f − fN , ψj,m〉|2 +
∑
m∈Z
|〈f − fN , φm〉|2.

Per construction of fN and by the orthogonality of the system, we get with (4.4.1) that

‖f − fJ‖2L2 =
∑

j>J,m∈Z
|〈f, ψj,m〉|2 . 2−2Jt‖f‖2Ht = 2−2Jt.

It is clear that this rate cannot be improved if uniform approximation for all f with ‖f‖Ht ≤ 1 is requested.
The statement above can be extended to more general approximation spaces by defining for an MRA (Vj)j∈Z
t > 0 and p, q > 1

Atp,q :=
{
f ∈ Lp :

(
2sjdistLp(f, Vj)

)
j≥0
∈ `q

}
. (4.4.2)

We call Atp,q the linear approximation spaces of (Vj)j∈Z. Then, it turns out that under the assumptions of
(4.4.1): Atp,q = Btp,q with equivalent norms. See [9] for the details.

Next, we assume that we are given a differential equation

Lu = f,

24



where L is a bounded, invertible differential operator from Ht(R)→ L2(R). Then, we have a weak formulation

a(u, v) := 〈Lu, v〉 = 〈f, v〉 for all v ∈ L2(R).

Assume that a(·, ·) is a bounded sesquilinear form such that a(v, v) ∼ ‖v‖2Ht . Using the analysis and synthesis
operators of a wavelet orthonormal basis, we can now rewrite the differential equation as

TLT ∗c = Tf.

We have that (formally) for c ∈ `2

〈TLT ∗c, c〉 = 〈LT ∗c, T ∗c〉 ∼ ‖T ∗c‖2Ht ∼
∥∥∥(2jtcj,m)j,m∥∥∥2

`2
=
〈
P 2tc, c

〉
,

where P is the diagonal matrix, that maps (cj,m)j≥0,m∈Z to (2jcj,m)j≥0,m∈Z. In other words, TLT ∗ is an
unbounded operator on `2 but P−tTLT ∗P−t is bounded from above and below. We have transformed the
differential equation into a well-conditioned discrete linear problem. Using the approximation results we
know that if the solution u is smooth, then solving the truncated linear system, up to a maximum scale J
yields a reconstruction of the solution approximating u very well.

We shall see, that this is not the most efficient way to solve the differential equation above, though.

4.4.3 Non-linear approximation

The approximation above is based on linear approximation. This approximation is easy to find, but we will
see below, that it is usually far worse than a non-linear approximation. For a function f ∈ H and a sequence
(φn)n ∈N ⊂ H, we define the best N -term approximation error of f with respect to (φn)n ∈N by

σN (f) := inf
c∈`2:‖c‖0=N

∥∥∥∥∥f −∑
n∈N

cnφn

∥∥∥∥∥
H

.

Here ‖c‖0 denotes the number of non-zero entries of c.
We consider the following example. Let ψ, φ have compact support and be such that (4.4.2) is satisfied

for p = q = 2, t = 1/2. Let f = χ[0,1] 6∈ H
1
2 (R). Therefore, it is not hard to see with (4.4.2) that

‖f − fJ‖L2 & 2−
J
2−δ,

for all δ > 0. To form fJ we need O(2J ) many wavelet elements, if we only consider those which are supported
in a compact set K.

On the other hand, for every j there only exist O(1) elements ψj,m the support of which contains {0}
or {1}. Hence, 〈f, ψj,m〉 = 0 for all but c > 0 many m ∈ Z, for every j ≥ 0. Moreover, |〈f, ψj,m〉| .
2j/2| supp ψj,m| = 2−j/2.

Let Λj contain the indices of all nonzero coefficients (〈f, ψj,m〉)m∈Z and define for N = cJ

f(N) =

J∑
j=1

∑
m∈Λj

〈f, ψj,m〉ψj,m +
∑
m∈Λ0

〈f, φm〉φm.

It is straight-forward to compute that

‖f − f(N)‖2L2 . 2−J = 2−N/c.

As a consequence, σN (f) . 2−N/c. We see that, the linear approximation method required N elements to

achieve an approximation error of O(N
1
2 ), while the non-linear approximation rate achieves an exponential

error decay.
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The reason this example works is, of course, that, as (4.4.1) reveals, f has a much higher smoothness in a
Besov scale as in a Sobolev scale. Indeed, whenever a function has significantly higher Besov regularity than
Sobolev regularity, then a best N -term approximation will be significantly better than a linear approximation.
This is substantiated in the following theorem proved in [7, Theorem 4.2.2].

Theorem 4.4.2 ([7]). Assume that ψ, φ, p and t = 1/p − 1/2 are such that (4.4.1) holds. Then, for all
f ∈ Btp,p: σN (f) . N−t.

Proof. We invoke Stechkin’s Lemma, see e.g. [14]. It states that if we denote by IN (c) the indices of the N
largest coefficients in modulus of a sequence (ci)i∈I , then ∑

I\IN (c)

|ci|2
 1

2

≤ N−t‖c‖`p , (4.4.3)

for t = 1
p −

1
2 .

f ∈ Btp,p and t = 1/p− 1/2 in (4.4.1) shows that (〈f, ψj,m〉)j,m ∈ `p. Setting c = (〈f, ψj,m〉)j,m in (4.4.3)
yields the result.

As Stechkin’s lemma admits a converse for t = 1/p− 1/2− δ for all δ > 0 one can also obtain a converse
of Theorem (4.4.2). Additionally, the theorem holds for higher-dimensional wavelet systems after replacing
t = 1/p− 1/2 by t = d(1/p− 1/2) and N−t by N−t/d, where d is the dimension of the space.

4.4.4 Adaptive solution of operator equations

If the solution of a PDE has higher regularity in a Besov scale than in a Sobolev scale, it could make
sense to build the associated Galerkin spaces using only those coefficients that correspond to the best
N -term approximation. Of course these coefficients are unknown as they depend on the solution of the PDE.
Surprisingly, it is possible to construct an algorithm that choses the Galerkin spaces adaptively. Moreover,
the number of computational operations of this algorithm to produce an approximation to the solution u of
error ε is asymptotically equivalent to the smallest number N so that σN (u) ≤ ε.

This truely impressive result is due to Cohen, Dahmen, and DeVore [8]. Its proof is based on the
approximation results, the preconditioning and the fact that some differential operators are almost diagonal
when discretised with respect to wavelet bases. We shall not introduce this property of almost diagonality of
differential operators here, but refer to this mysterious property from now on by saying that L is compressible
with respect to a wavelet basis.

Theorem 4.4.3 ([8]). Let Ω be a bounded domain, ψ, φ generators of an orthonormal wavelet basis,
L : Ht

0(Ω) → H−t(Ω) be compressible with respect to that basis, bounded, invertible and elliptic. Finally,
assume that f ∈ H−t(Ω) and

Lu = f

where u is such that σN (u) = O(N−s). Then there exists an algorithm, depending on (ψ, φ, L, s, t), called
SOLVE, such that cε = SOLVE[ε, L, f ] and

• ‖u− T ∗cε‖ = O(‖cε‖−s0 );

• Only O(‖cε‖0) flops are required to compute cε.
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Chapter 5

Directional systems

We saw in the previous section that wavelets are very efficient in approximating one-dimensional piece-wise
constant functions with a finite number of jumps. It turns out that in higher dimensions, this is not correct
anymore. In fact, consider a non-empty set B ⊂ (0, 1)2 with a smooth boundary. Then χB is piece-wise
constant, and χ̂B 6∈ L1(R2). One can show by using the projection-slice theorem that there even is a θ ∈ R2

such that
(t 7→ χ̂B(tθ)) 6∈ L1(R).

Therefore, for any partition of unity (γj)j∈Z as in the definition of a Besov space, we have that ‖γjχ̂B‖∞ . 2−j

does not hold for j →∞. Hence, per definition is follows that

χB 6∈ B1
1,1(R2).

Thus, invoking a converse of Theorem 4.4.2 with d = 2 we get that σN (χB) . N−
1
2−ε does not hold for any

ε > 0.
We see that we do not have exponentially fast decay of the N -term approximation error for functions

with distributed singularities in higher dimensions. Nonetheless, it could be, that N−
1
2 was, in fact, the best

N -term approximation rate one could hope for, for functions of this sort. This is not the case, as we will
demonstrate in the sequel. To make these statements more precise, we first give a more precise definition of a
function class of piece-wise smooth functions.

Definition 5.0.1. Let ν > 0. The class of cartoon-like functions E2(R2, ν) is defined as the set of functions
f : R2 → R of the form f = f0 + χBf1. Here, we assume that B ⊂ (0, 1)2 where ∂B ∈ C2 and the curvature
of ∂B is bounded by ν. Moreover, fi ∈ C2(R2) with ‖fi‖C2 ≤ 1 and supp fi ⊆ (0, 1)2 for i = 0, 1.

We have the following lower bound on the worst case N -term approximation error of this function class
by any representation system.

Theorem 5.0.2 ([28, 16]). Let Ψ = (ψλ)λ∈Λ ⊂ L2(R2). Then, we have that

sup
f∈E2(R2,ν)

σN (f,Ψ) & N−1,

where σN (f,Ψ) denotes the best N -term approximation error of f with respect to Ψ.

Remark 5.0.3. • The theorem above only holds under an additional assumption on the type of best
N -term approximation. In fact, this lower bound requires an N -term approximation to be constructed
under the restriction of polynomial depth search. In other words, for a fixed polynomial p, only elements
of Ψ where |λ| ≤ p(N) are allowed to be used for the N -term approximation.
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• The lower bound of Theorem 5.0.2 already holds fir the smaller function class of piecewise constant
cartoon-like functions, i.e., when f0 = 0 and f1 = 1 in Definition 5.0.1.

• It appears to be a bit arbitrary to focus on C2 regularity in the definition of cartoon-like functions and
the optimality result. In fact, generalisations exist to piecewise Ck functions with Ck regular boundaries.
The lower bound on the N -term approximation rate is then N−k/2, see e.g. [5].

Considering that there is a considerable gap between the approximation by wavelets and the lower bound
of Theorem 5.0.2 we shall be interested in finding an alternative representation system that performs better
when curve-like singularities are present.

5.1 Shearlets

To understand how to construct a system that offers optimal approximation of piece-wise constant or smooth
functions we observe in Figure 5.1 why the isotropic scaling of wavelets is suboptimal to capture singularities
along lower dimensional manifolds.

Figure 5.1: Left: Isotropically shaped squares overlapping a curve. Right: The same curve covered by
anisotropically shaped and rotated rectangles.

It appears to be worthwhile to study function systems with different types of localisation and a method to
also rotate the elements. The first system of this type was the curvelet system, [4]. Which is a generalisation
of 2d wavelets, with an anisotropic scaling matrix and rotated elements. It is very similar to the shearlet
systems that we shall introduce in the following section and hence, we only make appropriate comments
there, as to where the differences lie.

5.1.1 Continuous shearlet transform

Returning to the standard procedure that we have already observed for the short-time Fourier transform
and the Gabor systems, or the wavelet transform and the wavelet systems, we first introduce a continuous
transform and then demonstrate how this leads to discrete systems.

For a ∈ R+, s ∈ R, we denote the anisotropic scaling matrix Aa and the shearing matrix Ss by

Aa :=

(
a 0

0 a
1
2

)
, and Ss :=

(
1 s
0 1

)
.

Based on these two matrices, we can now define the shearlet transform.

Definition 5.1.1. Let ψ ∈ L2(R2), then we define

SH : L2(R2)→ L∞(R+ × R× R2)

f 7→ ((a, s, t) 7→ 〈f, ψa,s,t〉),
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where
ψa,s,t(x) := a−

3
4ψ(A−1

a Ss(x− t)).

We call SH the shearlet transform.

The curvelet transform is set up very similarly, but by replacing the shearing matrix Ss by a rotation
matrix.

If ψ has compact support, then the anisotropy in the scaling matrix gives rise to shearlet elements ψa,s,t
the support of which obeys the scaling law

width = length2.

For a→ 0 the elements the width of the elements is essentially of the order of a and the length of the order of√
a. Now we basically have three questions about the shearlet transform: Is SH an isometry between L2(R2)

and L2(R+ × R× R2, λ) for a measure λ? Do we have an inversion formula? Can we extract any interesting
features of f from SH(f)? As in the wavelet case we first make an assumption on the type of generating
functions that make the transform into an isometry.

Definition 5.1.2. Let ψ ∈ L2(R2). We call ψ an admissible shearlet, if

Cψ :=

∫
R+

|ψ̂(ξ)|2

|ξ1|2
dξ <∞

and Cψ 6= 0.

For any admissible shearlet, we have that the shearlet transform is an isometry up to a multiplication by
Cψ.

Theorem 5.1.3 ([19]). Let ψ be an admissible shearlet, then for all f ∈ L2(R2):

‖f‖2L2 =
1

Cψ

∫
R+

∫
R

∫
R2

|SH(f)(a, s, t)|2dtdsda
a3
.

Proof. We have that∫
R+

∫
R

∫
R2

|SH(f)(a, s, t)|2dtdsda
a3

=

∫
R+

∫
R

∫
R2

|〈f, ψa,s,t〉|2dtds
da

a3

=

∫
R+

∫
R

∫
R2

∣∣∣〈f̂ , ψ̂a,s,t〉∣∣∣2 dtdsda
a3

=

∫
R+

∫
R

∫
R2

|
∫
R2

f̂(ξ)a
3
4 ψ̂
(
AaS

T
s ξ
)
e−2πi〈ξ,t〉dξ|2dtdsda

a3

=

∫
R+

∫
R

∫
R2

∣∣∣f̂(ξ)
∣∣∣2 ∣∣∣a 3

4 ψ̂
(
AaS

T
s ξ
)∣∣∣2 dξdsda

a3
.

where the last line follows from Parsevals theorem. Carelessly using Fubini, leads us to∫
R+

∫
R

∫
R2

|SH(f)(a, s, t)|2dtdsda
a3

=

∫
R2

|f̂(ξ)|2
(∫

R+

∫
R

∣∣∣ψ̂(AaS
T
s ξ)
∣∣∣2 ds da

a
3
2

)
dξ.

Showing that
∫
R+

∫
R |ψ̂(AaS

T
s ξ)|2a−

3
2 dsda = Cψ is an exercise.
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Additionally, we have a reconstruction formula.

Theorem 5.1.4 ([19]). Let ψ be an admissible shearlet, then for all f ∈ L2(R2):

f =
1

Cψ

∫
R+

∫
R

∫
R2

SH(f)(a, s, t)ψa,s,tdtds
da

a3
.

Finally, we want to understand what kind of information on f we can extract from SH(f). For the wavelet
transform, we could extract the local smoothness of a function from the decay. The Gabor and Fourier
transform also allowed analysis of the smoothness (but not locally) by analysing the decay. As shearlets have
an additional directional component, the shearlet transform gives an even more precise account about the
local smoothness than the wavelet transform. To make this more precise we need to recall the definition of
the wavefront set.

Definition 5.1.5. Let f ∈ L2(R2). We say that (x, λ) ∈ R2 × R is a regular directed point of f if there
exists a neighborhood Ux of x, a smooth function φ with supp φ ∈ Ux, φ(x) = 1 on a neighborhood of x, and
a neighborhood Vλ of λ such that

F(φf)(ξ) decays rapidly for |ξ| → ∞, if
ξ2
ξ1
∈ Vλ.

We denote the set of regular directed points of f by R(f) and we define the wavefront set of f by WF(f) =
(R2 × R) \ R(f).

We have the following characterisation of the wavefront set.

Theorem 5.1.6 ([19]). Let ψ be an admissible shearlet, such that ψ̂ ∈ C∞(R2), and

|ψ̂(ξ)| . min{|ξ1|L, 1}
(1 + |ξ|)M

, and |ψ(x)| . 1

(1 + |x|)K
for all x, ξ ∈ R2, and

for all K,L,M ∈ N (The implicit constant is allowed to depend on K,M,L). If f ∈ L2(R2) and (x0, λ0) is
a regular directed point of f , then there exist neighborhoods of x0 and λ0 called U0 and V0 such that for all
P ∈ N

|SH(f)(a, s, t)| . aP , for all (s, t) ∈ U0 × V0.

Additionally, if for (x1, λ1) ∈ R2 × R there exist neighborhoods U1 and V1 such that for all P ∈ N

|SH(f)(a, s, t)| . aP , for all (s, t) ∈ U1 × V1,

then (x1, λ1) ∈ R(f).

The result above collects a couple of results from [19], in a very weak form. In fact, the argument also
works for much less restrictive assumptions on ψ. However, then the concept of wavefront set needs to be
replaced by that of N -wavefront set, where one does not require rapid decay of the Fourier transform of the
truncated function but polynomial decay of order N .

Sketch of Proof of Theorem 5.1.6. Let (x0, λ0) be a regular directional point of f . If supp ψ = [−1, 1]2 then
for a < 1

supp ψa,s,t = t+ S−s
(
[−a, a]× [−

√
a,
√
a]
)
⊂ B(1+|s|)

√
a(t).

Hence, for any φ ∈ C∞ such that φ = 1 on a neighborhood of t we have that for sufficiently small a > 0

〈f, ψa,s,t〉 = 〈φf, ψa,s,t〉.
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Applying Plancherel’s identity yields

〈f, ψa,s,t〉 = 〈F(φf), ψ̂a,s,t〉. (5.1.1)

Now we make the bold assumption that supp ψ̂ ⊂ ([−c2,−c1] ∪ [c1, c2])× [−c2, c2] for constants c1, c2 > 0.
Of course, due to the uncertainty principle, this assumption is never fulfilled, but by the decay assumptions
on ψ̂ we see that it is almost satisfied.

Now we compute:

supp ψ̂a,s,t = supp ψ̂a,s,0 =
{
ξ ∈ R2 : AaS

T
−kξ ∈ ([−c2,−c1] ∪ [c1, c2])× [−c2, c2]

}
.

In other words,
ξ ∈ supp ψ̂a,s,t ⇔ |ξ1| ∈ a−1[c1, c2], and |ξ2 − kξ1| ≤ a−

1
2 c2.

By the reverse triangle inequality we conclude that ||ξ2| − |kξ1|| ≤ a−
1
2 c2 and hence

ξ ∈ supp ψ̂a,s,t =⇒ |ξ2|
|ξ1|
∈

[
|kξ1| − a−

1
2 c2

|ξ1|
,
|kξ1|+ a−

1
2 c2

|ξ1|

]
⊂ k +

√
a

[
−c2
c1
,
c2
c1

]
.

Hence, per definition of the wavefront set we have that for ξ ∈ supp ψ̂a,s,t that for any P ∈ N

|F(φf)(ξ)| . (1 + |ξ|)−P . aP .

Plugging this estimate into (5.1.1) yields the result. In reality, we do not have compact supports but only
fast decay of the shearlet and its Fourier transform, but this does not introduce large errors.

The converse of the theorem is more technical and based on the reconstruction formula.

Figure 5.2 demonstrates the behavior of some parts of the shearlet transform of a characteristic function
with smooth boundary curve.

Figure 5.2: Depiction of the different scenarios of a shearlet interacting with a singularity. The wavefront
set of a function χB where B ⊂ R2 with ∂B ∈ C∞ is precisely the set of all (x, λ) such that x ∈ ∂B and
λ = ~n2/~n1, where ~n is a normal at ∂B in x. In the scenario on the left, the shearing parameter is not
corresponding to the normal direction, hence the associated shearlet coefficients will decay rapidly for a to 0.
The shearlet in the center has a matching shearing parameter and the coefficients will decay slowly with a to
0. In the rightmost image, the shearlet is not intersecting the singularity. Again the decay will be very fast
for a to 0.

5.1.2 Discrete shearlet transform

We give the definition of a discrete shearlet system first and then discuss to what extend this is a reasonable
discretisation of the continuous transform.
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Definition 5.1.7. Let φ, ψ, ψ̃ ∈ L2(R2) and c > 0. Then the cone-adapted shearlet system is defined by

SH(φ, ψ, ψ̃, c) := Φ ∪Ψ ∪ Ψ̃, where

Φ :=
{
φ(· −m) : m ∈ cZ2

}
,

Ψ :=
{
ψj,k,m := 2

3j
4 ψ(SkA2j · −cm) : j ∈ N, |k| ≤

⌈
2
j
2

⌉
,m ∈ cZ2

}
,

Ψ̃ :=
{
ψ̃j,k,m := 2

3j
4 ψ̃(S̃kÃ2j · −m) : j ∈ N, |k| ≤

⌈
2
j
2

⌉
,m ∈ cZ2

}
.

We notice, that we have not directly discretised the continuous transform, but introduced two systems,
where the shearing parameter k is now bounded. This is done, because in practice having unbounded shearing
can lead to very long elements and an unequal treatment of different directions. Additionally, a low-frequency
part called Φ was introduced, which plays a role similar to the space spanned by scaling functions in the
construction of a wavelet basis.

Under certain conditions on the sufficiently smoothness of φ, ψ, ψ̃ and the number of vanishing moments
of ψ, ψ̃ there exists a c∗ > 0 such that for all c ≤ c∗ we have that SH(φ, ψ, ψ̃, c) forms a frame for L2(R2),
[26]. It is an open question if shearlet bases exist and even if there exist tight shearlet frames with compactly

supported generators φ, ψ, ψ̃.
In any case, we can now establish the N -term approximation rate of a shearlet frame for cartoon-like

functions in the following theorem. We shall only sketch the proof and simplify the statement. A detailed
proof and theorem statement can be found in [28, Theorem 1.3].

Theorem 5.1.8 ([28]). Let ν > 0. There exist φ, ψ, ψ̃ ∈ L2(R) and c > 0 such that the associated shearlet

system forms a frame (ψλ)λ∈Λ with dual frame (ψ̃λ)λ∈Λ and for every f ∈ E2(R2, ν)

‖f − fN‖L2 ≤ CN−1 log(N)
3
2 for N →∞,

where
fN =

∑
ΛN

〈f, ψλ〉ψ̃λ,

and ΛN contains the indices corresponding to N largest coefficients of (|〈f, ψλ〉|)Λ.

Proof. We give a very rough scetch of the proof, which, while very imprecise, still captures the main essence
of the argument.

First of all, considering the asymptotic behavior depicted in Figure 5.2 we see that, for sufficiently large j
only those coefficients |〈f, ψλ〉| are large, where the shearlets intersect the singularity curve tangentially. One

can estimate, for fixed j all the coefficients k, m, such that ψj,k,m or ψ̃j,k,m are in the geometric position
described above by 2j/2. Additionally, we estimate

|〈f, ψj,k,m〉| ≤ 2
3
4 j | supp ψj,k,m| . 2−

3
4 j .

Combining these estimates, we see that

‖(〈f, ψλ〉)λ∈Λ‖p`p .
∑
j∈N

2
j
2 2−p

3
4 j .

Hence, as long as p > 2/3 we have that (〈f, ψλ〉)λ∈Λ ∈ `p for all ε > 0. Since (ψ̃λ)λ∈Λ is a frame, its synthesis
operator is bounded. We conclude that

‖f − fN‖2L2 .
∑

Λ\ΛN

|〈f, ψλ〉|2 . N−2t,
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for t = 1
p −

1
2 by the Stechkin inequality (4.4.3). Since p > 2/3 arbitrary, this yields

‖f − fN‖2L2 . N−2+ε

for every ε > 0. Turning the ε exponent into a log term requires a bit more work.

5.1.3 Further developements

In addition to wavelets, curvelets, and shearlets there is an immense variety of representation systems with
different advantages. Contourlets [15] form a system based on anisotropic scalings but with a filter-based
implementation leading to fast implementations. Ridgelets [3] form extremely anisotropic function system
where all elements remain of fixed length but decrease in width with increasing scale. Ridgelets have
also successfully been used to discretise transport equations [21]. All these systems fall in the concept of
α-molecules [20]. This framework describes systems with a certain time-frequency localisation and α-scaling,
i.e., elements that obey the scaling law

width = lengthα.

Additionally, as mentioned earlier, higher-order regularity of boundary curves allows better approximation
rates in principle. The surflet system [5] is based on local Taylor approximations to offer optimal approximation
rates for functions with singularity surfaces in Ck for k ∈ N. Another related approach is to replace the
shearing operation with higher-order deformations is the basis of the bendlet and taylorlet transform [30, 17].
Finding a proper way to discretise these transforms and establishing frame properties of the discrete systems
is still an open problem.

A representation system that has recently significantly gained in interest is that of neural networks, and in
particular deep neural networks. Let N0, N1, . . . , NL ∈ N, % : R→ R, and W` : RN`−1 → RN` for ` = 1, . . . , L.
Then the function

x 7→WL(%(WL−1%(. . .W2(%(W1(x))))))

is called a neural network with L layers, activation function % and architecture (N0, N1, . . . , NL). The recent
increased interest in these functions is based on the fact, that they form the computational architecture
for modern machine learning techniques, called deep learning [29]. Neural networks form a very powerful
parametrised system. First results showed that the system is universal, in the sense that every continuous
function on a compact domain can be approximated arbitrarily well by a neural network [11, 24]. Measuring
the approximation fidelity against the number of free parameters in a network gives an analogue to a best
N -term approximation. Approximation rates of neural networks have been established for many function
classes [1, 33, 34, 35, 38]. Some of these results are also based on approximation rates established for wavelets
and shearlets, [2, 36].
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